Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:44:36.501Z Has data issue: false hasContentIssue false

Magnesio-lucchesiite from the Kowary vicinity, Karkonosze Mountains, SW Poland: the third occurrence worldwide

Published online by Cambridge University Press:  14 October 2022

Mateusz P. Sęk*
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Adam Włodek
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Marcin Stachowicz
Affiliation:
University of Warsaw, Faculty of Geology, 02-089 Warszawa, Żwirki and Wigury 93, Poland
Krzysztof Woźniak
Affiliation:
University of Warsaw, Department of Chemistry, 02-093 Warszawa, Pasteura 1, Poland
Adam Pieczka
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
*
*Author for correspondence: Mateusz P. Sęk, Email: [email protected]

Abstract

Two tourmaline samples occurring in quartz veinlets, which cross-cut an amphibolite body at the Budniki camp near the Kowary town in the south-west part of the Karkonosze Mountains, SW Poland, were studied through microprobe and single crystal X-ray diffraction. Samples were extracted from core and rim regions of crystals with concentric zoning. Chemical and structural data revealed that the core tourmaline is characterised by a dravite–oxy-dravite composition, with the formula: X(Na0.82Ca0.07K0.01Sr0.010.09)Σ1Y(Mg1.73Fe2+0.81Fe3+0.41Ti0.04V0.01)Σ3Z(Al5.85Fe3+0.15)Σ6(TSi6O18)(BO3)3(OH)3W(OH0.50O0.50)Σ1 and unit cell parameters a = 15.97377(14) Å and c = 7.22644(7) Å. The rim part of the crystals has a magnesio-lucchesiite composition, described by the formula: X(Ca0.49Na0.41K0.04Sr0.020.04)Σ1Y(Mg1.87Fe2+0.95Ti0.15Fe3+0.02V0.02)Σ3Z(Al5.49Fe3+0.51)Σ6(BO3)3(TSi6O18)(OH)3W(O0.81F0.18OH0.01)Σ1 with unit cell parameters a = 15.9863(3) Å and c = 7.22426(15) Å. Both tourmalines show similar refined populations at the Y and Z sites: Y[(Fe2+0.810Mg0.680)Σ1.490(Al1.044Fe3+0.413V0.009)Σ1.465Ti0.045]Σ3Z(Al4.806Mg1.042Fe3+0.152)Σ6 (dravite–oxy-dravite), and Y[(Fe2+0.945Mg0.750)Σ1.695(Al0.737Fe3+0.404V0.018)Σ1.159Ti0.146]Σ3Z(Al4.749Mg1.115Fe3+0.137)Σ6 (magnesio-lucchesiite), with a comparable Mg/(Mg + Fe) ratio of ~0.54–0.56, oxidation of Fe expressed as Fe3+/Fetotal ratio ~0.36–0.41, and trace components such as Ti, Sr, V, Cr, Ni and Co. The geological history of the eastern Karkonosze region in the Kowary vicinity indicates that both tourmalines crystallised from B-bearing metamorphic fluids mobilised by Variscan prograde metamorphism from the protoliths of the Velká Upá mica schists that host the Budniki amphibolite. The fluids migrated into the tectonised amphibolite enriched in Ti, V, Cr, Ni and Co, and mineralised the fractures within it through deposition of soluble species in the form of quartz–tourmaline veinlets. Magnesio-lucchesiite crystallised in an early retrogression stage, probably from Ca- and F-bearing fluids secondary enriched in B by the dissolution of dravite–oxy-dravite. The Budniki camp is, in addition to the type and co-type magnesio-lucchesiite localities, the third documented occurrence of the species worldwide.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Giancarlo Della Ventura

References

Berryman, E.J., Wunder, B., Wirth, R., Rhede, D., Schettler, G., Franz, G. and Heinrich, W. (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan. Contributions to Mineralogy and Petrology, 169, 116.CrossRefGoogle Scholar
Berryman, E.J., Wunder, B., Rhede, D., Schettler, G., Franz, G. and Heinrich, W. (2016) P–T–X controls on Ca and Na distribution between Mg–Al tourmaline and fluid. Contributions to Mineralogy and Petrology, 171, 114.CrossRefGoogle Scholar
Biernacka, J. (2019) Insight into diagenetic processes from authigenic tourmaline: An example from Carboniferous and Permian siliciclastic rocks of western Poland. Sedimentary Geology, 389, 7390.CrossRefGoogle Scholar
Borkowska, M., Hameurt, J. and Vidal, P. (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geologica Polonica, 30, 121146.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Dutrow, B.L. and Henry, D.J. (2016) Fibrous tourmaline: a sensitive probe of fluid compositions and petrologic environments. The Canadian Mineralogist, 54, 311335.CrossRefGoogle Scholar
Dutrow, B.L., Foster, C.T. and Henry, D.J. (1999) Tourmaline-rich pseudomorphs in sillimanite zone metapelites: Demarcation of an infiltration front. American Mineralogist, 84, 794805.CrossRefGoogle Scholar
Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.P., Ntaflos, T., Luvizotto, G.L., Nasdala, L. and Tillmans, E. (2010) Metamorphic ultrahigh-pressure tourmaline: Structure, chemistry, and correlations to PT conditions. American Mineralogist, 95, 110.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Pp. 503557 in: Boron: Mineralogy, Petrology, and Geochemistry (Anovitz, Lawrence M. and Grew, Edward S., editors). Reviews in Mineralogy, 33. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (2012) Tourmaline at diagenetic to low-grade metamorphic conditions: Its petrologic applicability. Lithos, 154, 1632.CrossRefGoogle Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.CrossRefGoogle Scholar
Ilnicki, S. (2011) Variscan prograde PT evolution and contact metamorphism in metabasites from the Sowia Dolina, Karkonosze-Izera massif, SW Poland. Mineralogical Magazine, 75, 185212.CrossRefGoogle Scholar
Korytowski, A., Dörr, W. and Żelaźniewicz, A. (1993) U-Pb dating of (meta)granitoids in the NW Sudetes (Poland) and their bearing on tectono-stratigraphic correlation. Terra Nova, 5, 331332.Google Scholar
Krmíček, L., Novák, M., Trumbull, R., Cempírek, J. and Huzar, S. (2021) Boron isotopic variations in tourmaline from metacarbonates and associated calc-silicate rocks from the Bohemian Massif: constraints on boron recycling in the Variscan orogen. Geoscience Frontiers, 12, 219230.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Hegner, E. and Opletal, M. (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). International Journal of Earth Sciences, 90, 304324.CrossRefGoogle Scholar
Kryza, R. and Mazur, S. (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera block (Western Sudetes, SW Poland). Neues Jahrbuch fur Mineralogie-Abhandlungen, 169, 157192.Google Scholar
Kryza, R., Pin, C., Oberc-Dziedzic, T., Crowley, Q.G. and Larionov, A. (2014) Deciphering the geochronology of a large granitoid pluton (Karkonosze Granite, SW Poland): an assessment of U–Pb zircon SIMS and Rb–Sr whole rock dates relative to U–Pb zircon CA–ID–TIMS. International Geology Review, 56, 756782.CrossRefGoogle Scholar
Kusiak, M.A., Williams, I.S., Dunkley, D.J., Konečný, P., Słaby, E. and Martin, H.M. (2014) Monazite to the rescue: U–Th–Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif. Chemical Geology, 364, 7692.CrossRefGoogle Scholar
Lis, J., Stępniewski, M. and Sylwestrzak, H. (1965) Brannerite and co-existing minerals in the quartz vein from Wołowa Góra Mt. Near Kowary (Sudetes). Biuletyn Instytutu Geologicznego, 193, 203223 [in Polish only].Google Scholar
Machowiak, K. and Armstrong, R. (2007) SHRIMP U–Pb zircon age from the Karkonosze granite. Mineralogia – Special Papers, 31, 193196.Google Scholar
Mazur, S. (1995) Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range. Geologia Sudetica, 29, 3198 [in Polish only with English summary].Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T. (2006) The Variscan Orogen in Poland. Geological Quarterly, 50, 89118.Google Scholar
Mochnacka, K., Oberc-Dziedzic, T., Mayer, W. and Pieczka, A. (2008) Ti remobilization and sulphide/sulphoarsenide mineralization in amphibolites: effect of granite intrusion (the Karkonosze-Izera Massif, SW Poland). Geological Quarterly, 52, 349368.Google Scholar
Oberc-Dziedzic, T. (1988) The development of gneisses and granites in the eastern part of the Izera crystalline unit in the light of textural investigations. Acta Universitatis Wratislaviensis, 997, 1184.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C. and Madej, S. (2005) Gneiss protolith ages and tectonic boundaries in the NE part of the Bohemian Massif (Fore-Sudetic Block, SW Poland). Geological Quarterly, 49, 363378.Google Scholar
Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. and Larionov, A. (2010) Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. International Journal of Earth Sciences (Geologishe Rundschau), 99, 2746.CrossRefGoogle Scholar
Oliver, G.J.H., Corfu, F. and Krogh, T.E. (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, 150, 355369.CrossRefGoogle Scholar
Pasero, M. (2022) The New IMA List of Minerals – A Work in Progress – Updated: July 2022. http://cnmnc.main.jp/IMA_Master_List_(2022-07).pdfGoogle Scholar
Pieczka, A., Ertl, A., Sęk, M.P., Twardak, D., Zelek, S., Szełęg, E. and Giester, G. (2018) Oxy-dravite from Wołowa Góra Mountain, Karkonosze massif, SW Poland: Crystallochemical and structural studies. Mineralogical Magazine, 82, 913928.CrossRefGoogle Scholar
Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K. and Waldhausrová, J. (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: A review based on Sm-Nd isotope and geochemical data. The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, 423, 209229.Google Scholar
Scribner, E.D., Cempírek, J., Groat, L.A., Evans, R.J., Biagioni, C., Bosi, F., Dini, A., Hålenius, U., Orlandi, P. and Pasero, M. (2021) Magnesio-lucchesiite, CaMg3Al6(Si6O18)(BO3)3(OH)3O, a new species of the tourmaline supergroup. American Mineralogist, 106, 862871.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Slack, J.F. and Trumbull, R.B. (2011) Tourmaline as a recorder of ore-forming processes. Elements, 7, 321326.CrossRefGoogle Scholar
van Hinsberg, V.J., Schumacher, J.C., Kearns, S., Mason, P.R. and Franz, G. (2006) Hourglass sector zoning in metamorphic tourmaline and resultant major and trace-element fractionation. American Mineralogist, 91, 717728.CrossRefGoogle Scholar
van Hinsberg, V.J., Henry, D.J. and Dutrow, B.L. (2011) Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements, 7, 327332.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Żaba, J. (1984) Genesis and metamorphic evolution of gneisses and granitoids of the Izerski Stóg massif (Western Sudetes). Geologia Sudetica, 19, 90190.Google Scholar
Supplementary material: File

Sęk et al. supplementary material

Sęk et al. supplementary material

Download Sęk et al. supplementary material(File)
File 396.5 KB