Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T11:29:43.871Z Has data issue: false hasContentIssue false

Magmatic gold grains in the El Tale lamproite, Fortuna, SE Spain

Published online by Cambridge University Press:  05 July 2018

L. Toscani*
Affiliation:
Dipartimento di Scienze della Terra, Università di Parma, Parco Area delle Scienze 157A, 43100 Parma, Italy

Abstract

Gold of magmatic origin has been discovered in the lamproitic dyke of El Tale (Fortuna, Province of Murcia), a small outcrop of ultrapotassic rocks of tile Tertiary magmatic province of southeastern Spain. It is the first finding of gold grains in lamproite magmas from southeastern Spain, and indeed worldwide. Pure gold occurs only in the glassy groundmass as very rare spherules and globular grains (up to 5 µm). Despite the occurrence of gold grains, the bulk rock contains not more than ∼19 ppb Au.

The magmatic origin of gold is inferred from the heterogeneous distribution of the grains in the rock, the shape of the grains (which is comparable to that of gold grains crystallized experimentally from mafic liquids) and from the As-Sb-S-Cl-poor composition of the bulk rock. The Pd/Ir and Au/Pd ratios, little affected by the early segregation of olivine (∼10 vol.%), support an Au- and PGE-rich composition of the mantle source. The low f O2 (≈IW) and the complexing with F and alkalies probably favoured partitioning of Au and PGE into the lamproite magma.

Type
Letters
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amossé, J. and Allibert, M. (1993) Partitioning of iridium and platinum between metals and silicate melts: evidence for passivation of the metals depending on f O2 . Geochim. Cosmochim. Acta, 57, 2395–8.CrossRefGoogle Scholar
Amossé, J., Allibert, M., Fischer, W. and Piboule, M. (1987) Étude de l'influence des fugacities d'oxigene et de soufre sur la differenciation des platinoides dans les magmas ultramafiques. Resultats preliminareires. C. R. Acad. Sci. Paris, t304 Seri II, 19, 1183–5.Google Scholar
Amossé, J., Allibert, M., Fischer, W. and Piboule, M. (1990) Experimental study of the solubility of platinum and iridium in basic silicate melts – Implications for the differentiation of platinum-group elements during magmatic processes. Chem. Geol., 81, 45–53.CrossRefGoogle Scholar
Barnes, S.J., Naldrett, A.J. and Gorton, M.P. (1985) The origin and the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol., 53, 303–23.CrossRefGoogle Scholar
Barnes, S.J., Boyd, R., Korneliusson, A., Nilsson, L.P., Often, M., Pedersen, R.B. and Robins, B. (1988) The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulfide segregation on platinum-group elements, gold, nickel and copper: examples from Norway. In Geo-platinum ‘87 (Prichard, H.M., Potts, P.J., Bowles, J.F.W. and Cribb, S.J., eds). Elsevier, 113–43.CrossRefGoogle Scholar
Brugmann, G.E., Arndt, N.T., Hofmann, A.W. and Tobschall, H.J. (1985) Precious-metal abundances in komatiites and komatiitic basalts: implications for the genesis of PGE-bearing magmatic sulfide deposits. Canad. Mineral., 23, 293–321.Google Scholar
Brugmann, G.E., Arndt, N.T., Hofmann, A.W. and Tobschall, H.J. (1987) Noble metal abundances in komatiite suites from Alexo, Ontario, and Gorgona Island, Colombia. Geochim. Cosmochim. Acta, 51, 2159–69.CrossRefGoogle Scholar
Contini, S., Venturelli, G., Toscani, L., Capedri, S. and Barbieri, M. (1993) Cr-Zr-armalcolite-bearing lam-proites of Cancarix, SE Spain. Mineral. Mag., 57, 203–16.CrossRefGoogle Scholar
Cotton, S.A. (1997) Chemistry of precious metals. Blackie Academic and Professional, 374 pp.CrossRefGoogle Scholar
Davies, G. and Tredoux, M. (1985) The platinum-group element and gold contents of the marginal rocks and sills of the Bushveld Complex. Econ. Geol., 80, 838–48.CrossRefGoogle Scholar
De Larouzière, F.D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C. and Ott d'Estevou, P. (1988) The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene. Tectonophysics, 152, 4152.CrossRefGoogle Scholar
Foley, S.F. (1989) The genesis of lamproitic magmas in a reduced fluorine-rich mantle. In Kimberlites and related rocks, Vol 1. (Jacques, A.L., Ferguson, J. and Green, D.H., eds). Blackwells, pp. 616–31.Google Scholar
Foley, S.F. (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28, 435–53.CrossRefGoogle Scholar
Foley, S.F., Venturelli, G., Green, D.H. and Toscani, L. (1987) The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci. Rev., 24, 81134.CrossRefGoogle Scholar
Fuster, J.M., Gastesi, P., Sagredo, J. and Fermoso, M.L. (1967) Las rocas lamproiticas del SE de España. Est. Geol. Madrid, 23, 3569.Google Scholar
Jaques, A.L. (1990) Do lamprophyres have high precious-metal contents? Bur. Miner. Resources Res. Newsl., 12, 17–8.Google Scholar
Jaques, A.L., Lewis, J.D. and Smith, C.B. (1986) The kimberlites and lamproites of Western Australia. Geol. Surv. W. Australia Bull., 132, 268 pp.Google Scholar
Keays, R.R. (1982) Palladium and iridium in komatiites and associated rocks: application to petrogenetic problems. In Komatiites (Arndt, N.T. and Nisbet, E.G., eds). Allen, pp. 435–57.Google Scholar
Kerrich, R. and Wyman, D.A. (1994) The mesothermal gold-lamprophyre association: significance for an accretionary geodynamic setting, supercontinent cycles, and metallogenic processes. Mineral. Petrol., 51, 147–72.CrossRefGoogle Scholar
Letnikov, F.A. and Vilor, N.V. (1981) Gold in the hydrothermal process. Nauka (in Russian), Moscow, 224 pp.Google Scholar
Lewis, J.D. (1987) The geology and geochemistry of the West Kimberley lamproite province, Western Australia. M.Sc. thesis, Univ. Western Australia, Perth.Google Scholar
Mann, A.W. (1984) Mobility of gold and silver in lateritic weathering profiles. some observations from Western Australia. Econ. Geol., 79, 38–49.Google Scholar
Nixon, P.H., Thirlwall, M.F., Buckley, F. and Davies, C.J. (1984) Spanish and western Australian lam-proites aspects of whole rock geochemistry. In Kimberlites and related rocks (Kornprobst, J., ed.). Elsevier, pp. 285–96.CrossRefGoogle Scholar
Rock, N.M.S. and Groves, D.I. (1988) Can lamprophyres resolve the genetic controversy over mesothermal gold deposits?. Geology, 16, 538–41.2.3.CO;2>CrossRefGoogle Scholar
Sekerin, A.P., Men'shagin, Yu.V. and Lashchenov, V.A. (1993) Sayan Precambrian lamproites. Trans. Russ. Acad. (Dokl. Acad. Nauk 1993, 329/3,328-331), 329A, 99104.Google Scholar
Taylor, S.R. and McLennan, S.M. (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, 312 pp.Google Scholar
Taylor, W.R., Rock, N.M.S., Groves, D.I., Perring, C.S. and Golding, S.D. (1994) Geochemistry of Archean shoshonitic lamprophyres from the Yilgarn Block, Western Australia: Au abundance and association with gold mineralization. Appl. Geochem., 9, 197222.CrossRefGoogle Scholar
Toscani, L. and Salvioli-Mariani, E. The lamproite of El Tale (Fortuna, Southeast Spain). Submitted.Google Scholar
Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A., Kogarko, L.N. and Celestini, S. (1984) The ultrapotassic rocks from southeastern Spain. Lithos, 17, 3754.CrossRefGoogle Scholar
Venturelli, G., Salvioli-Mariani, E., Foley, S.F., Capedri, S. and Crawford, A. (1988) Petrogenesis and conditions of crystallization of Spanish lamproitic rocks. Canad. Mineral., 26, 6779.Google Scholar