Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T18:52:58.988Z Has data issue: false hasContentIssue false

Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy

Published online by Cambridge University Press:  05 July 2018

L. Melluso*
Affiliation:
Dipartimento di Scienze della Terra, Università di Napoli Federico II, Italy
S. Conticelli
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Italy Istituto di Geoscienze e Georisorse (I.G.G.), CNR, Firenze, Italy
R. de' Gennaro
Affiliation:
Centro Interdipartimentale di Strumentazioni per Analisi Geomineralogiche (C.I.S.A.G.), Università di Napoli Federico II, Italy
*

Abstract

Kirschsteinite (mainly CaFeSiO4), in association with forsterite-fayalite solid solutions, melilite, clinopyroxene, leucite, nepheline and several minor phases, is reported for the first time in the 290 ka Capo di Bove melilite-leucitite lava flow of the Alban Hills volcanic complex (Italy). Kirschsteinite appears very late in the crystallization sequence, as indicated by textural and chemical evidence (Mg# ≈ 25). It shows significant solid solution towards fayalite, and is found with groundmass phases indicating a relatively low-temperature melt composition more silica-undersaturated than phonolite (i.e. devoid of alkali feldspar). This clearly points to the very silica-undersaturated nature of almost all the Alban Hills volcanic rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avanzinelli, R., Lustrino, M., Mattei, M., Melluso, L. and Conticelli, S. (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: the role of carbonated pelitic vs. pelitic sediment recycling at destructive plate margin. Lithos, 113, 213227.CrossRefGoogle Scholar
Bernardi, A., de Rita, D., Funiciello, R., Innocenti, F. and Villa, I.M. (1982) Chronology and structural evolution of the Alban Hills volcanic complex. Fifth International Conference on Geochronology, Cosmochronology, and Isotope Geology, Nikko, Japan, Abstracts, pp. 2324.Google Scholar
Blancher, S.B., D'Arco, P., Fonteilles, M. and Pascal, M.-L. (2010) Evolution of nepheline from mafic to highly differentiated members of the alkaline series: the Messum complex, Namibia. Mineralogical Magazine, 74, 415432.CrossRefGoogle Scholar
Boari, E. and Conticelli, S. (2007) Mineralogy and petrology of associated Mg-rich ultrapotassic, shoshonitic, and calc-alkaline rocks: the Middle Latin Valley monogenetic volcanoes, Roman mag-matic Province, southern Italy. The Canadian Mineralogist, 45, 14431469.CrossRefGoogle Scholar
Boari, E., Avanzinelli, R., Melluso, L., Giordano, G., Mattei, M., De Benedetti, A.A., Morra, V. and Conticelli, S. (2009) Isotope geochemistry (Sr-Nd-Pb) and petrogenesis of leucite-bearing rocks from “Colli Albani” volcano, Roman Magmatic Province, Central Italy: inferences on volcano evolution and magma genesis. Bulletin of Volcanology, 71, 9771005 doi: 10.1007/s00445-009-0278-6.CrossRefGoogle Scholar
Boctor, N.Z. and Yoder, H.S. Jr. (1986) Petrology of some melilite-bearing rocks from Cape Province, Republic of South Africa: relationship to kimberlites. American Journal of Science 286, 513539.CrossRefGoogle Scholar
Chalapathi Rao, N.V., Reed, S.J.B., Pyle, D.M. and Beattie, P.D. (1996) Larnitic kirschsteinite from the Kotakonda kimberlite, Andhra Pradesh, India. Mineralogical Magazine 60, 513516.CrossRefGoogle Scholar
Conticelli, S. (1989) Genesi del magmatismo alcalino-potassico dell ‘Italia centrale: evidenze petrologiche, geochimiche e petrologico-sperimentali. PhD thesis, Universita degli Studi di Firenze, Italy, 404 pp. (in Italian).Google Scholar
Conticelli, S., Laurenzi, M.A., Giordano, G., Mattei, M., Avanzinelli, R., Melluso, L., Tommasini, S., Boari, E., Cifelli, F. and Perini, G. (2010 a) Leucite-bearing (kamafugitic/leucititic) and -free (lamproitic) ultra-potassic volcanic rocks and associated shoshonites in the Italian Peninsula: constraints on petrogenesis and geodynamics. Paper 21 in: The Geology of Italy (Beltrando, M., Peccerillo., A., Mattei, M., Conticelli, S. and Doglioni, C., editors). Journal of the Virtual Explorer, 36, [doi:10.3809/jvirtex.2009.00251].Google Scholar
Conticelli, S., Boari, E., Avanzinelli, R., De Benedetti, A.A., Giordano, G., Mattei, M., Melluso, L. and Morra, V. (2010 b) Geochemistry, isotopes and mineral chemistry of the Colli Albani volcanic rocks: constraints on magma genesis and evolution. Pp. 107139 in: The Colli Albani Volcano (Funiciello, R. and Giordano, G., editors). IAVCEI Special Publications, 3, Geological Society, London.CrossRefGoogle Scholar
Cordier, P.-L.-A. (1868) Description des roches composant I'ecorce terrestre. Savy-Dunod Editors, Paris.Google Scholar
Cundari, A. and Ferguson, A.K. (1991) Petrogenetic relationships between melilitite and lamproite. Contributions to Mineralogy and Petrology, 107, 343357.CrossRefGoogle Scholar
de Rita, D., Faccenna, C., Funiciello, R. and Rosa, C. (1995) Stratigraphy and volcano-tectonics. Pp. 3371 in: The Volcano of the Alban Hills, Roma (Trigila, R., editor).Google Scholar
D'Orazio, M., Innocenti, F., Tonarini, S. and Doglioni, C. (2007) Carbonatites in a subduction system: the Pleistocene alvikites from Mt. Vulture (southern Italy). Lithos, 98, 313334.CrossRefGoogle Scholar
Federico, M., Peccerillo, A., Barbieri, M. and Wu, T.W. (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology 115, 384401.CrossRefGoogle Scholar
Freda, C., Gaeta, M., Palladino, D.M. and Trigila, R. (1997) The Villa Senni Eruption (Alban Hills, Central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. Journal of Volcanology and Geothermal Research, 78, 103120.CrossRefGoogle Scholar
Gaeta, M., Fabrizio, G. and Cavarretta, G. (2000) F-phlogopites in the Alban Hills Volcanic District (Central Italy): indications regarding the role of volatiles in magmatic crystallisation. Journal of Volcanology and Geothermal Research, 99, 179193.CrossRefGoogle Scholar
Gee, L.L. and Sack, R.O. (1988) Experimental petrology of melilite-nephelinites. Journal of Petrology, 29, 12331255.CrossRefGoogle Scholar
Giordano, G., De Benedetti, A.A., Diana, A., Diano, G., Gaudioso, F., Marasco, F., Miceli, M., Mollo, S., Cas, R.A.F. and Funiciello, R. (2006) The Colli Albani mafic caldera (Roma, Italy): Stratigraphy, structure and petrology. Journal of Volcanology and Geothermal Research, 155, 4980.CrossRefGoogle Scholar
Giordano, G., de Rita, D., Cas, R.A.F. and Rodani, S. (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic “Peperino Albano” basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: influence of topography. Journal of Volcanology and Geothermal Research, 118, 131144.CrossRefGoogle Scholar
Gupta, A.K. (1972) The system forsterite-diopside-akermanite-leucite and its significance in the origin of potassium-rich mafic and ultramafic volcanic rocks. American Mineralogist 57, 12421259.Google Scholar
Gupta, A.K. and Lidiak, E.G. (1973) The system diopside-nepheline-leucite. Contributions to Mineralogy and Petrology, 41, 231239.CrossRefGoogle Scholar
Gupta, A.K., Venkateswaran, G.P., Lidiak, E.G. and Edgar, A.D. (1973) The system diopside-nepheline-akermanite-leucite and its bearing on the genesis of alkali-rich mafic and ultramafic volcanic rocks. Journal of Geology, 81, 209218.CrossRefGoogle Scholar
Henderson, C.M.B. and Gibb, F.G.F. (1983) Felsic mineral crystallization trends in differentiating alkaline basic magmas. Contributions to Mineralogy and Petrology, 84, 355364.CrossRefGoogle Scholar
Jambon, A., Boudouma, O., Fonteilles, M., Le Guillou, C., Badia, D. and Barrat, J.-A. (2008) Petrology and mineralogy of the angrite Northwest Africa 1670. Meteoritics and Planetary Science, 43, 17831795.CrossRefGoogle Scholar
Karner, D.B., Marra, F. and Renne, P.R. (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcano-tectonic hazard for Rome. Journal of Volcanology and Geothermal Research, 107, 185219.CrossRefGoogle Scholar
Longhi, I. (1999 a) Phase equilibrium constraints on angrite petrogenesis. Geochimica et Cosmochimica Acta, 63, 573585.CrossRefGoogle Scholar
Longhi, J. (1999 b) Angrite petrogenesis revised. Lunar and Planetary Science Conference, XXX, abstract.Google Scholar
Marra, F., Freda, C., Scarlato, P., Taddeucci, J., Karner, D.B., Renne, P.R., Gaeta, M., Palladino, D.M., Trigila, R. and Cavarretta, G. (2003) Post caldera activity in the Alban Hills Volcanic district (Italy): 40Ar/39Ar geochronology and insights into the magma evolution. Bulletin of Volcanology, 65, 227247.CrossRefGoogle Scholar
McKay, G., Crozaz, G., Wagstaff, J., Yang, S.-R. and Lundberg, L. (2000) A petrographic, electron micro-probe, and ion microprobe study of mini-angrite Lewis Cliff 87051. Lunar and Planetary Science Conference, XXI, 771772.Google Scholar
Melluso, L., Morra, V. and Di Girolamo, P. (1996) The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineralogy and Petrology, 56, 226250.CrossRefGoogle Scholar
Melluso, L., Lustrino, M., Ruberti, E., Brotzu, P., Gomes, C.B., Morbidelli, L., Morra, V., Svisero, D.P. and d'Amelio, F. (2008) Major and trace element composition of olivine, perovskite, clino-pyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaiba, Brazil. The Canadian Mineralogist 46, 1940, doi: 10.3749/canmin.46.1.19.CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010) Mineral compositions and magmatic evolution of the Sung Valley ultramafic-alkaline-carbonatitic complex (NE India). The Canadian Mineralogist 48, 205229 CrossRefGoogle Scholar
Mikouchi, T. and McKay, G. (2001) Mineralogical investigation of D'Orbigny: a new angrite showing close affinities to Asuka 881371, Sahara 99555 and Lewis Cliff 87051. Lunar and Planetary Science Conference XXXII, 1876.Google Scholar
Mikouchi, T., Takeda, H., Miyamoto, M., Ohsumi, K. and McKay, G. (1995) Exsolution lamellae of kirschsteinite in magnesium-iron olivine from an angrite meteorite. American Mineralogist, 80, 585592.CrossRefGoogle Scholar
Mukhopadhyay, D.K. and Lindsley, D.H. (1983) Phase relations in the join kirschsteinite (CaFeSiO4)-fayalite (Fe2SiO4). American Mineralogist, 68, 10691094.Google Scholar
Perini, G. and Conticelli, S. (2002) Crystallization conditions of leucite-bearing magmas and their implications on the magmatological evolution of ultrapotassic magmas: The Vico Volcano, Central Italy. Mineralogy and Petrology, 74, 253276.CrossRefGoogle Scholar
Rock, N.M.S. (1986) The nature and origin of ultramafic lamprophyres: alnöites and allied rocks. Journal of Petrology, 27, 155196.CrossRefGoogle Scholar
Sahama, Th.G. and Hytönen, K. (1957) Kirschsteinite, a natural analogue to synthetic iron monticellite, from the Belgian Congo. Mineralogical Magazine, 31, 698699.CrossRefGoogle Scholar
Sokol, E., Sharygin, V., Kalugin, V., Volkova, N. and Nigmatulina, E. (2002) Fayalite and kirschsteinite solid solutions in melts from burned spoil-heaps, South Urals, Russia. European Journal of Mineralogy, 14, 795807 CrossRefGoogle Scholar
Stoppa, F. and Lupini, L. (1993) Mineralogy and petrology of the Polino monticellite calciocarbona-tite (Central Italy). Mineralogy and Petrology, 49, 213231.CrossRefGoogle Scholar
Washington, H.S. (1906) The Roman Comagmatic Region. Carnegie Institution of Washington Yearbook, 36, 1220.Google Scholar
Watkins, S.D., Giordano, G., Cas, R.A.F. and de Rita, D. (2002) Emplacement processes of the mafic Villa Senni Eruption Unit (VSEU) ignimbrite succession, Colli Albani Volcano, Italy. Journal of Volcanology and Geothermal Research, 118, 173203.CrossRefGoogle Scholar