Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T06:27:56.561Z Has data issue: false hasContentIssue false

Irinarassite Ca3Sn2SiAl2O12 – new garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia

Published online by Cambridge University Press:  05 July 2018

I. O. Galuskina*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
E. V. Galuskin
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
K. Prusik
Affiliation:
Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
V. M. Gazeev
Affiliation:
Institute of Geology of Ore Deposits, Geochemistry, Mineralogy and Petrography (IGEM) RAS, Staromonetny 35, Moscow, Russia
N. N. Pertsev
Affiliation:
Institute of Geology of Ore Deposits, Geochemistry, Mineralogy and Petrography (IGEM) RAS, Staromonetny 35, Moscow, Russia
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
*

Abstract

Irinarassite, Ca3Sn2SiAl2O12, a new mineral species of the garnet supergroup was discovered in metasomatically altered carbonate-silicate xenoliths in ignimbrites of the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. It occurs as small zones and irregular spots in kimzeyite-kerimasite or rarely as single crystals not exceeding 10 μm in size, within complex pseudomorphs after zircon. Lakargiite, tazheranite, baddeleyite, kerimasite, kimzeyite, baghdadite and rarely magnesioferrite are associated with irinarassite in the pseudomorphs which are confined to larnite-cuspidine zones immediately adjoining the ignimbrite. Larnite, cuspidine, rondorfite, fluor- and hydroxylellestadite, fluorite and secondary minerals such as ettringite, hillebrandite and bultfonteinite are associated with irinarassite. Irinarassite is pale brown to yellow colour. The mineral is characterized by the absence of cleavage and by an irregular fracture. The calculated density is 4.3 g cm–1. The mineral is isotropic with a calculated refractive index of 1.9. The empirical crystal chemical formula of irinarassite from the holotype specimen is as follows (Ca2.965Fe2+0.035)Σ3(Sn1.016Zr0.410Ti0.262Sb5+0.237Fe2+0.035U6+0.017Sc0.014Hf0.006Nb0.004)Σ2.001(Al1.386Fe3+0.804Si0.446Ti4+0.364)Σ3O12. Electron backscatter diffraction patterns of irinarassite are fitted to the garnet model with a = 12.50(3) Å with excellent MAD (mean angular deviation) = 0.16°. The Raman spectrum of irinarassite is analogous to those of kerimasite and other Zr-Sn-garnets of the schorlomite and bitikleite groups.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthauer, G., McIver, J.R. and Viljoen, E.A. (1979) 57Fe and 119Sn Mössbauer studies of natural tinbearing garnets. Physics and Chemistry of Minerals, 4, 235244 CrossRefGoogle Scholar
Butler, B.C.M. (1978) Tin-rich garnet, pyroxene and spinel from a slag. Mineralogical Magazine, 41, 487492 CrossRefGoogle Scholar
Chen, J., Halls, C. and Stanley, C.J. (1992) Tin-bearing skarns of South China: Geological setting and mineralogy. Ore Geology Reviews, 7 (3), 225248 CrossRefGoogle Scholar
Day, A. and Trimby, P. (2004) Channel 5 Manual HKL Technology Inc., Hobro, Denmark.Google Scholar
Galuskin, E.V., Gazeev, V.M., Lazic, B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Dzierżanowski, P., Gurbanov, A.G. and Bzowska, G. (2009) Chegemite Ca7(SiO4)3(OH)2 – a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 21, 10451059 CrossRefGoogle Scholar
Galuskin, E.V., Armbruster, T., Galuskina, I.O., Lazic, B., Winiarski, A., Gazeev, V.M., Dzierżanowski, P., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Gurbanov, A.G. and Janeczek, J. (2011) Vorlanite (CaU6+)O4 – A new mineral from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 96, 188196 CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E., Wrzalik, R. and Gurbanov, A.G. (2010a) Bitikleite-(SnAl) and bitikleite-(ZrFe) – new garnets from xenoliths of the Upper Chegem volcanic structure, Kabardino- Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 959–967.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Kusz, J., Dzierżanowski, P., Gazeev, V.M., Pertsev, N.N., Prusik, K., Zadov, A.E., Winiarski, A., Wrzalik, R. and Gurbanov, A.G. (2010b) Elbrusite-(Zr) – a new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist, 95, 11721181 CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E. and Wrzalik, R. (2010c) Toturite Ca3Sn2Fe2SiO12 – A new mineral species of the garnet group. American Mineralogist, 95, 13051311 CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dzierżanowski, P. (2011) Irinarassite, IMA 2010- 073. CNMNC Newsletter No. 8, April 2011, page 292; Mineralogical Magazine, 75, 289294.Google Scholar
Galuskina, I.O., Galuskin, E.V., Kusz, J . , Dzierżanowski, P., Prusik, K., Gazeev, V.M., Pertsev, N.N. and Dubrovinsky, L.S. (2013) Dzhuluite, Ca3SbSnFe3+ 3 O12, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 25, 231239.CrossRefGoogle Scholar
Gazeev, V.M., Zadov, A.E., Gurbanov, A.G., Pertsev, N.N., Mokhov, A.V. and Dokuchaev, A.Ya. (2006) Rare minerals from Verkhniechegemskaya caldera (in xenoliths of skarned limestone). Vestnik Vladikavkazskogo Nauchnogo Centra, 6, 1827 (in Russian).Google Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hå lenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Konev, A.A., Ushchapovskaya, Z.F., Kashaev, A.A. and Lebedeva, V.S. (1969) Tazheranite – a new calcium-titanium-zirconian mineral. Doklady Akademii Nauk SSSR, 186, 917920 (in Russian).Google Scholar
Kononov, O.V., Evglevskaya, L.D., Klyuchareva, S.M., Korovkin, M.A. and Kabalov, Yu.K. (1989) Tin in garnet of the Tyrnyauz deposit. Doklady Akademii Nauk SSSR, 307, 206210 (in Russian).Google Scholar
Kraus, W. and Nolze, E. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of resulting X-ray powder patterns. Journal of Appl i e d Crystallography, 29, 301303 CrossRefGoogle Scholar
Ma, C. and Rossman, G.R. (2008) Discovery of tazheranite (cubic zirconia) in the Allende meteorite. Geochimica et Cosmochimica Acta, 72, A577–A577.Google Scholar
McIver, J.R. and Mihálik, P. (1975) Stannian andradite from “Davib Ost,” South West Africa. The Canadian Mineralogist, 13, 217221 Google Scholar
Rastsvetaeva, R.K., Pushcharovkiy, D.Yu., Spiridonov, E.M. and Gekimyants, V.M. (1998) Tazheranite and calzirtite: structural-mineralogical similarity and distinction. Doklady Akademii Nauk, 359, 529531 (in Russian).Google Scholar
Rossell, H.J. (1982) Calzirtite – a fluorite-related superstructure. Acta Crystallographica, B38, 593595 CrossRefGoogle Scholar
Rulmont, A., Tarte, P., Van Moer, A., Cartié, B. and Choisnet, J. (1995) Simultaneous occurrence of Sn4+ on the three cationic sites of the garnet structure: the solid solutions CaxSnxGa8-2xO12 (2.5 < x < 3.0). Journal of Solid State Chemistry, 118, 69 CrossRefGoogle Scholar
Sekulić, A., Furić, K. and Stubičar, M. (1997) Raman study of phase transition in pure and alloyed zirconia induced by ball-milling and a laser beam. Journal of Molecular Structure, 410-411, 275279.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Strocka, B., Holst, P. and Tolksdorf, W. (1978) An empirical formula for the calculation of lattice constants of oxide garnets based on substituted yttrium- and gadolinium-iron garnets. Philips Journal of Research, 33, 186202.Google Scholar
Yamane, H. and Kawano, T. (2011) Preparation, crystal structure and photoluminescence of garnet-type calcium tin titanium aluminates. Journal of Solid State Chemistry, 184, 965970.CrossRefGoogle Scholar