Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:36:56.398Z Has data issue: false hasContentIssue false

Högbomite in sapphirine-bearing rocks from the Bamble Sector, south Norway

Published online by Cambridge University Press:  05 July 2018

D. Visser
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, P.O, Box 80.021, 3508 TA Utrecht, The Netherlands
P. H. M. Thijssen
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, P.O, Box 80.021, 3508 TA Utrecht, The Netherlands
J. C. Schumacher
Affiliation:
Mineralogisches Institut, Olshausenstrasse 40, W-2300 Kiel, Germany

Abstract

Högbomite is reported from two upper-amphibolite and granulite-facies, sapphirine-bearing, Al–Mg–Fe-rich and silica-poor lens-shaped layers within the Bamble Sector, south Norway. Primary assemblages, indicating peak metamorphic conditions of 773-844°C at 7 kbar (Mg–Fe exchange thermometry), are spinel–sapphirine–biotite–gedrite, spinel–corundum–sapphirine–cordierite and orthopyroxene–biotite–cordierite–plagioclase. Högbomite formed by hydrous alteration and oxidation of primary spinel and rutile and/or ilmenite according to the generalised reaction:

Suggested conditions of högbomite formation are 550–620°C and 6–7 kbar. The högbomites contain 10.2–14.7 wt.% MgO, 04).3 wt.% ZnO, 58.9–62.1 wt.% Al2O3 and 15.6-17.6 wt.% Fe as FeO. The two högbomite may belong to different polytypes, as suggested by their differing TiO2 (9.9-10.1 versus 5.7–5.8 wt. %) and calculated Fe3+ – and H2O–contents. The partitioning of Zn between spinel and högbomite is not uniform and is considered to depend upon prevailing fo2 and aH2O.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Forschergruppe Hochdruck Metamorphose. Institut ftir Mineralogie, Ruhr-Universität Bochum. Postfach 102148. W-4630 Bochum 1. Germany.

**

Present address: Mineralogisch-Petrographisches Institut. Albertstrasse 236. W-7800 Freiburg, Germany.

References

Ackermand, D., Windley, B.F., and Herd, R.K. (1983) Magnesian högbomite in a sapphirine-bearing rock from the Fiskenaesset region, W. Greenland. Mineral. Mag., 47, 555–61.CrossRefGoogle Scholar
Beukes, G.J., van Zyl, V. C., Schoch, A.E., De Bruiyn, H., van Aswegen, G., and Strydom, D. (1986) A högbomite-spinel-gedrite paragenesis from northern Bushmanland, Namaqua mobile belt, South Africa. Neues Jahrb. Mineral., Abh., 155, 5366.Google Scholar
Čech, F., Rieder, M., and Vrfina, S. (1976) Cobaltoan högbomite from Zambia. Neues Jahrb. Mineral.,Mh., 525-31.Google Scholar
Coolen, J. J. M. M. M. (1981) Högbomite and aluminium spinel from some metamorphic rocks and Fe-Ti ores. Ibid., 374-84.Google Scholar
Field, D. and Clough, P.W.L. (1976) K/Rb ratios and metasomatism in metabasites from a Precambrian amphibolite-granulite transition zone. J. Geol. Soc. London, 132, 277–88.CrossRefGoogle Scholar
Gatehouse, B.M. and Grey, I.E. 1982) The crystal structure of högbomite-8H. Am. Mineral., 67, 373–80.Google Scholar
Gieré, R. (1986) Zireonolite, allanite and högbomite in a marble skarn from the Bergell contact aureole: Implications for mobility of Ti, Zr and REE. Contrib. Mineral. Petrol., 93, 459–70.CrossRefGoogle Scholar
Grew, E.S., Abraham, K., and Medenbach, O. (1987) Ti-poor högbomite in kornerupine-cordierite-sillimi-nate rocks from Ellammankovilpatti, Tamil Nadu, India. Ibid. 95, 21-31.Google Scholar
Grew, E.S., Abraham, K., and Medenbach, O. Drugova, G.M., and Leskova, N.V. (1989) Högbomite from the Aldan shield, Eastern Siberia, U.S.S.R. Mineral. Mag., 53, 376–9.CrossRefGoogle Scholar
Grew, E.S., Abraham, K., and Medenbach, O. Hiroi, Y., and Shiraishi, K. (1990) Högbomite from the Prince Olav Coast, East Antarctica: An example of oxidation-exsolution of a complex magnetite solid solution. Am. Mineral, 75, 589600.Google Scholar
Kolderup, N.H. (1928) Fjellbygningen i kyststrCket mellem Nordfjord og Sognefjord (with English Summary). Bergens Museums .4rbok, 1, 1222.Google Scholar
Kolderup, N.H. (1936) Korund, Hcgbomit, Staurolith und Skapo- lith in den Anorthositgabbros des Bergengebietes. Ibid. 8, 1-11.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. Am. Mineral., 68, 277–9.Google Scholar
Lamb, R.C. (1981) Geochemical studies in Proterozoic high-grade gneiss terrain, Bamble Sector, south Norway. Unpubl. Ph.D. thesis, University of Nottingham.Google Scholar
Lamb, R.C. Smalley, P.C. and Field, D. (1986) P-T conditions for the Arendal granulites, southern Norway: Implications for the roles of P, T and CO2 in the deep crustal LILE-depletion. J. Metam. Geol., 4, 143–60.CrossRefGoogle Scholar
Mancktelow, N.S. (1981) Högbomite of unusual composition from Reedy Creek, South Australia. Mineral. Mag., 44, 91–4.CrossRefGoogle Scholar
Nel, H.J. (1949) Högbomite from the corundum fields of the eastern Transvaal. Mere. Geol. Surv. South Africa, 43, 117.Google Scholar
Nijland, T.G., Liauw, F., Visser, D., Maijer, C. and Senior, A. (in prep.) The cooling and uplift path of the Bamble Sector, south Norway, as unveiled by the corundum-bearing rocks from Froland.Google Scholar
Owen, J.V. and Greenough, J.D. (1991) An empirical sapphirine—spinel Mg-Fe exchange thermometer and its application to high grade xenoliths in the Popes Harbour dyke, Nova Scotia, Canada. Lithos, 26, 317–32.CrossRefGoogle Scholar
Peacor, D.R. (1967) New data on nigerite. Am. Mineral., 52, 864–6.Google Scholar
Petersen, E.U., Essene, E.J., Peacor, D.R., and Marcotty, L.A. (1989) The occurrence of högbomite in high-grade metamorphic rocks. Contrib. Mineral. Petrol., 101, 3513–60.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. Part I: Application to the analysis of homogeneous samples. La R(cherche A(rospatiale, 3, 1336.Google Scholar
Rammlmair, D., Mogessie, A., Purtscheller, F., and Tessadri, R. (1988) Högbomite from the Vumba schist Belt, Botswana. Am. MineraL, 73, 651–5.Google Scholar
Schetelig, J. (1917) Högbomite i norsk jernmalm. Norsk Geol. Tidsskrift, 4, 249–53.Google Scholar
Schmetzer, K. and Berger, A. (1990) Lamellar iron-free högbomite-24R from Tanzania. Neues Jahrb. MineraL, Mh., 401-12.Google Scholar
Schreyer, W. and Abraham, K. (1975) Peraluminous sapphirine as a metastable reaction product in kya-nite-gedrite-talc schist from Sar e Sang, Afghanistan. Mineral. Mag., 40, 171–80.CrossRefGoogle Scholar
Sengupta, P., Dasgupta, S., Bhattacharya, P.K., and Mukherjee, M. (1990) An orthopyroxene-biotite geothermometer and its application in crustal granu-lites and mantle derived rocks. J. Metam. GeoL, 8, 191–7.CrossRefGoogle Scholar
Spry, P.G. and Petersen, E.U. (1989) Zincian högbomite as an exploration guide to metamor-phosed massive sulphide deposits. Mineral. Mag., 53, 263–9.CrossRefGoogle Scholar
Spry, P.G. and Petersen, E.U. and Scott, S.D. (1986) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Econ. Geol., 81, 1446–63.CrossRefGoogle Scholar
Thijssen, P.H.M. (1990) Sapphirine-bearing rocks from Snaresund, Bamble, Norway: A petrological and geochemical study. Unpubl. M.Sc. thesis, University of Utrecht.Google Scholar
Touret, J. and de la Roche, H. (1971) Saphirine à Snaresund, près de Tvedestrand (Norvège méridio-hale). Norsk GeoL Tidsskrifi, 51, 169–75.Google Scholar
Verschure, R.H. (1985) Geochronological framework for the late-Proterozoic evolution of the Baltic Shield in south Scandinavia. In The Deep Proterozoic Crust in the North Atlantic Provinces (eds. Tobi, A. C. and Touret, J.), NATO ASI Series C 158 Reidel, Dordrecht, 381-410.CrossRefGoogle Scholar
Visser, D. and Senior, A. (1990) Aluminous reaction textures in orthoamphibole-bearing rocks: the pressure-temperature evolution of the high-grade Proterozoic of the Bamble Sector, south Norway. J. Metam. GeoL, 8, 231–46.CrossRefGoogle Scholar
Wilson, A.F. (1977) A zincian högbomite and some other högbomites from the Strangways Range, Central Australia. Mineral. Mag., 41, 337–44.CrossRefGoogle Scholar
Woodford, P.J. and Wilson, A.F. (1976) Sapphirine, högbomite, kornerupine, and surinamite from aluminous granulites, northeastern Strangways Range, central Australia. Neues Jahrb. MineraL, Mh., 15-35.Google Scholar
Zakrzewski, M.A. (1977) Högbomite from the Fe-Ti deposit of Liganga (Tanzania). Neues Jahrb. Min-real., Mh., 373-80.Google Scholar