Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T11:45:49.922Z Has data issue: false hasContentIssue false

The geochemistry and tectonic setting of the Demirköy pluton of the Srednogorie–Istranca granitoid chain, NW Turkey

Published online by Cambridge University Press:  05 July 2018

A. Aykol
Affiliation:
Department of Geological Engineering, İstanbul Technical University, Ayazaǧa, İstanbul, Turkey
S. Tokel
Affiliation:
Department of Geological Engineering, Black Sea Technical University, Trabzon, Turkey

Abstract

The chain of Late Subhercynian granitoids can be traced along the Srednogorie-Istranca-Pontid belt. The Demirköy pluton outcrops in the Istranca segment. The rocks of the pluton range from diorite through grandiorite to perthite granite with granodiorite predominating. On the basis of 25 chemical analyses, the intrusive setting of the granitoid has been investigated. Calcic to calc-alkaline and peraluminous to metaluminous character indicate a subduction-related origin. Low to moderate concentrations of the large-ion lithophiles (LIL), high field strength elements (HFS), light rare earth elements (La, Ce) and low HFS/LIL ratios indicate a mantle-derived magma with subduction-related enrichment. Trace element discrimination diagrams such as Rb/Zr-Nb, Rb/Zr-Y, Rb-SiO2 and Rb-(Nb + Y), are particularly indicative of normal arc-setting for the samples.

The Demirköy granitoid is chemically indistinguishable from the Upper Cretaceous granitoids of Strednogorie to the west and the Pontids to the east. This extensive maximum of plutonism can be considered as a time marker in the northern Tethys subduction system.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atherton, M. P. and Plant, J. A. (1985) High heat production granites and the evolution of the Andean and Caledonian continental margin. In High heat production granites, hydrotherrnal circulation and ore genesis (C. Halls, ed.). Institute of Mining and Metallurgy, London, 459-78.Google Scholar
Aydin, Y. (1974) Etude petrographique et geochimique de la partie centrale du massif d'lstranca (Turquie). Ph.D. thesis (Unpubl.) Univ. Nancy, France.Google Scholar
Aykol, A. (1979) Petrography and geochemistry of the Istranca-Demirkoy pluton. Do?entlik tezi, j.T.U. Maden Fakultesi, Istanbul (Unpubl., in Turkish).Google Scholar
Boyadjiev, S. (1979) The Srednogorie neointrusive magmatism in Bulgaria. Geohimija Mineralogija i Petrologija, 10, 7490.Google Scholar
Boyadjiev, S. (1981) Potasium-argon studies of the Middle-Alpine intrusions in the central Srednogorie. Ibid., 14, 28-46.Google Scholar
Boztuǧ, D., Debon, F., Le Fort, P., and Yilmaz, O. (1985) Geochemical characteristics of some plutons from the Kastamonu granitoid belt (Northern Anatolia, Turkey). Schweizerische Mineral. Petrogr. Mitt., 64, 389403.Google Scholar
Brown, G. C., Thorpe, R. S., and Webb, P. C. (1984) The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. J. Geol. Soc. Lond., 141, 413-26.CrossRefGoogle Scholar
Burtman, V. S. (1986) Origin of structural arcs of the Carpathian-Balkan region. Tectonophys., 127, 245-60.CrossRefGoogle Scholar
Çaǧlayan, M. A., Sengiin, M., and Yurtsever, A. (1987) Progressive brittle-ductile deformation in the Demirköy pluton. Abstract of the Geological Congress of Turkey 1987, Ankara, 18-19.Google Scholar
Chappell, B. W. and White, A. J. R. (1974) Two contrasting granite types. Pacific Geol., 8, 173-4.Google Scholar
Dercourt, J., Zonenshain, L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., Grandjacquet, C., Sbortshikov, I. M., Geyssant, J., Lepvrier, C., Pechersky, D. H., Boulin, J., Sibuet, J. C., Savostin, L. A., Sorokhtin, O., Wesphal, M., Bazhenov, M. L., Lauer, J. P., and Biju-Duval, B. (1986) Geological evolution of the tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophys., 123, 241315.CrossRefGoogle Scholar
Dewey, J. F., Pitman, W. C., Rayan, M. B. F., and Bonnin, J. (1973) Plate tectonics and the evolution of the Alpine System. Geol. Soc. Am. Bull., 84, 3137–80.2.0.CO;2>CrossRefGoogle Scholar
Irvine, T. N. and Baragar, W. R. A. (1971) A guide to the chemical classification of common volcanic rocks. Cand. J. Earth Sci., 8, 523–48.CrossRefGoogle Scholar
Ivanov, I. and Arnuodova, R. (1980) Geochemistry of barium strontium and rubidium in the south- Bulgarian granitoids. Geohimija Mineralogija i Petrologija, 13, 318.Google Scholar
Ivanov, I. Apostolov, R.. Bojadzieva, S., and Jordanov, J. (1981) Geochemistry of niobium and tantalum in the south Bulgarian granitoids. Ibid., 14, 3-13.Google Scholar
Moore, W. J., McKee, E. H., and Akmcı, Ö. (1980) Chemistry and chronology of plutonic rocks in the Pontid mountains, northern Turkey. European Copper Deposits Congress Book, Belgrade, 209-16.Google Scholar
Peacock, M. A. (1931) Classification of igneous rocks. J. Geol., 39, 6567.CrossRefGoogle Scholar
Pearce, J. A. (1983) The role of sub-continental lithosphere in magma genesis at destructive plate margins. In Continental basalts and mantle xenoliths (C. J. Hawkesworth and M. J. Norry, eds.) Shiva Publishing, Cheshire, 230249.Google Scholar
Pearce, J. A., Harris, N. G. W., and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956–83.CrossRefGoogle Scholar
Pitcher, W. S. (1983) Granite type and tectonic environment. In Mountain Building processes (K. Hsu, ed.) Academic Press, London, 1940.Google Scholar
Pitcher, W. S. Atherton, M. P., Cobbing, E. J., and Backinsale, R. D. (1985) Magmatism at a plate edge—The Peruvian Andes.Blackie UK/Halstead Press, U.S.A. CrossRefGoogle Scholar
Ricou, L. E., Dercourt, J., Geyssant, J., Grandjacquet, C., Lepvrier, C., and Biju-Duval, B. (1986) Geological constraints on the Alpine evaluation of the mediterranean tethys. Tectonophys., 123, 83122.CrossRefGoogle Scholar
Saunders, A. D. and Tarney, J. (1984) Geochemical characteristics of basaltic volcanism within back-arc basins. In Marginal basin geology (B. P. Kokelaar and M. F. Hovells, eds.) Spec. Publ. Geol. Soc. London, 16, 5976.Google Scholar
Şengör, A. M. C. and Yilmaz, Y. (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophys., 75, 181241.CrossRefGoogle Scholar
Streckeisen, A. L. (1976) To each plutonic rock its proper name. Earth Sci. Rev., 12, 133.CrossRefGoogle Scholar
Wedepohl, K. H. (1975) The contribution of chemical data to assumption about the origin of magmas from the mantle. Fortshr. Mineral., 52, 99192.Google Scholar