Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T21:14:53.028Z Has data issue: false hasContentIssue false

From structure topology to chemical composition. XX. Titanium silicates: the crystal structure of hejtmanite, Ba2Mn4Ti2(Si2O7)2O2(OH)2F2, a Group-II TS-block mineral

Published online by Cambridge University Press:  02 January 2018

E. Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
F. Cámara
Affiliation:
Dipartimento di Scienze della Terra, Università di Torino, I-10125, Torino, Italy CrisDi - Interdepartmental Center for Crystallography, via Giuria 7, 10126, Torino, Italy
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
L. A. Pautov
Affiliation:
A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskii Prospekt 18-2, Moscow 117071, Russia

Abstract

The crystal structure of hejtmanite, Ba2Mn4Ti2(Si2O7)2O2(OH)2F2, from Mbolve Hill, Mkushi River area, Central Province, Zambia (holotype material) has been refined on a twinned crystal to R 1 = 1.88% on the basis of 4539 [|F| > 4|F|] reflections. Hejtmanite is triclinic, C1̅, a = 10.716(2), b = 13.795(3), c = 11.778 (2) ,= 90.07(3),= 112.24(3),= 90.03(3), V = 1612(2) 3. Chemical analysis (electron microprobe) gives: Ta2O5 0.09, Nb2O5 1.27, ZrO2 0.65, TiO2 14.35, SiO2 23.13, BaO 26.68, SrO 0.19, FeO 11.28, MnO 15.12, Cs2O 0.05, K2O 0.33, F 3.82, H2Ocalc. 1.63, O = F 1.61, total 97.10 wt.%, where the H2O content was calculated from the crystal-structure refinement, with (OHF) = 4 apfu. The empirical formula, calculated on the basis of 20 (OF) anions, is of the form (Si2O7)2(XO)4(XP)2, Z=4: (Ba1.82K0.07 Sr0.02)Σ1.91(Mn2.33 Zr0.04Mg0.03)Σ3.95(Ti1.88Nb0.10Zr0.02)Σ2(Si2.02O7)2O2[(OH)1.89 F0.11]Σ2F2. The crystal structure is a combination of a TS (Titanium Silicate) block and an I (intermediate) block. The TS block consists of HOH sheets (Hheteropolyhedral, Ooctahedral). The topology of the TS block is as in Group-II TS-block minerals: Ti ( Nb) = 2 apfu per (Si2O7)2 [as defined by Sokolova (2006)]. In the O sheet, five [6]MO sites are occupied mainly by Mn, less Fe2 and minor Zr and Mg, with <MOφ> = 2.198(φ = O,OH), ideally giving Mn4 apfu. In the H sheet, two [6]MH sites are occupied mainly by Ti, with <MHφ> = 1.962(φ = O,F), ideally giving Ti2 apfu; four [4] Si sites are occupied by Si, with < SiO> = 1.625 . The MH octahedra and Si2O7 groups constitute the H sheet. The two [12]Ba-dominant AP(1,2) sites, with <APφ> = 2.984(φ = O, F), ideally give Ba2 apfu. Two (1,2) and two (1,2) sites are occupied by O atoms and OH groups with minor F, respectively, ideally giving (XO)4 = ()2()2=O2(OH)2 pfu. Two (1,2) sites are occupied by F, giving F2 apfu. TS blocks link via a layer of Ba atoms which constitute the I block. Simplified and end-member formulae of hejtmanite are Ba2(Mn,Fe2)4Ti2 (Si2O7)2O2(OH,F)2 F2 and Ba2Mn4Ti2(Si2O7)2O2(OH)2F2, Z = 4. Hejtmanite is a Mn-analogue of bafertisite, Ba2 4 Ti2(Si2O7)2O2(OH)2F2.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksenov, S.M., Rastsvetaeva, R.K. and Chukanov, N.V. (2014) The crystal structure of emmerichite Ba2Na3Fe +Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral. Zeitschrift für Kristallographie, 229, 17.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond valence method: an empirical approach to chemical structure and bonding. Pp. 1—30.in: Structure and Bonding in Crystals II (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Cámara, F., Sokolova, E. and Nieto, F (2009) Cámaraite, Ba3NaTi4(Fe2+,Mn)8(Si2O7)4O4(OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate mineral. Mineralogical Magazine, 73, 855870.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y and Hawthorne, F.C. (2010) The crystal structures of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite; revisions to the crystal chemistry of the astrophyllite-group minerals. The Canadian Mineralogist, 48, 1—16.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Khomyakov, A.P. (2013) Kolskyite, (Can) Na2Ti4(Si2O7)2O4(H2O)7, a Group-IV Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 51, 921—936.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A. and Hawthorne, F.C. (2014a) Saamite, BanTiNbNa3Ti(Si2O7)2O2(OH)2(H2O)2, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. The Canadian Mineralogist, 52, 745761.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A. and Hawthorne, F.C. (2014b) Nafertisite, Na3Fe102þTi2(Si6O17)2O2(OH)6F (H2O)2, from Mt. Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia: Refinement of the crystal structure and revision of the chemical formula. European Journal of Mineralogy, 26, 689—700.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Charrier, T., Dorcet, V and Carpentier, J.-F. (2015a) Fogoite-(Y), IMA 2014–098. CNMNC Newsletter No. 24, April 2015, page 250; Mineralogical Magazine, 79,247251.Google Scholar
Cémara, F., Sokolova, E., Abdu, Y.A. and Pautov, L.A. (2015b) From structure topology to chemical composition. UIX. Titanium silicates: revision of the crystal structure and chemical formula of bafertisite, Ba2Fe24þTi2(Si2O7)2O2(OH)2F2, a Group-II TS-block mineral. The Canadian Mineralogist (accepted).CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2016) From structure topology to chemical composition. XXII. Titanium silicates: revision of the crystal structure of jinshajiangite, NaBaFe24þTi2(Si2O7)2O2(OH)2F, a Group-II TS-block mineral. The Canadian Mineralogist (accepted).CrossRefGoogle Scholar
Guan, Ya.S., Simonov, V.I. and Belov, N.V. (1963) Crystal structure of bafertisite, BaFe2TiO[Si2O7](OH)2. Doklady Akademii Nauk SSSR, 149, 14161419.[in Russian].Google Scholar
McDonald, A.M., Grice, J.D. and Chao, G.Y. (2000) The crystal structure of yoshimuraite, a layered Ba-Mn-Ti silicophosphate. The Canadian Mineralogist, 38, 649656.CrossRefGoogle Scholar
Minerals. Handbook. Silicates (1996) IV(3) (additions to volumes III and IV), p. 132, Nauka, Moscow [in Russian].Google Scholar
Zhizhong, Peng and Jinchuan, Shen(1963) Crystal structure of bafertisite. Kexue Tongbao, 14, 6668 [in Chinese].Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (jρΖ) procedure for improved quantitative microanalysis. Pp. 104—106.in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rastsvetaeva, R.K., Tamazyan, R.A., Sokolova, E.V. and Belakovskii, D.I. (1991) Crystal structures of two modifications of natural Ba, Mn-titanosilicate. Soviet Physics Crystallography, 36, 186189.Google Scholar
Rastsvetaeva, R.K., Eskova, E.M., Dusmatov, V.D., Chukanov, N.V. and Schneider, F. (2008) Surkhobite: revalidation and redefinition with the new formula, (Ba,K)2CaNa(Mn,Fe2+,Fe3+)8Ti4(Si2O7)4O4(F,OH,O)6. European Journal of Mineralogy, 20, 289295.CrossRefGoogle Scholar
Semenov, E.I. and Zhang Peishan (1959) New mineral -bafertisite. Science Record. New Ser. Mineralogy, III (12), 652655.[in Russian].Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112—122.CrossRefGoogle Scholar
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. (2012) Further developments in the structure topology of the astrophyllite-group minerals. Mineralogical Magazine, 76, 863—882.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2013) From structure topology to chemical composition. XVI. New developments in the crystal chemistry and prediction of new structure topologies for titanium disilicate minerals with the TS block. The Canadian Mineralogist, 51, 861891.CrossRefGoogle Scholar
Sokolova, E.V., Egorov-Tismenko, Yu.K., Pautov, L.A. and Belakovskii, D.I. (1989) On the crystal structure of a new Ba-titanosilicate, BaMn2TiO[Si2O7](OH)2 - a member of the homologous series seidozerite-nacaphite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 118, 8184.[in Russian].Google Scholar
Sokolova, E., Abdu, Y.A., Hawthorne, F.C., Genovese, A., Cámara, F. and Khomyakov, A.P. (2015a) From structure topology to chemical composition. XVIII. Titanium silicates: revision of the crystal structure and chemical formula of betalomonosovite, a Group-IV TS-block mineral from the Lovozero alkaline massif, Kola Peninsula, Russia. The Canadian Mineralogist, 53, 401428.CrossRefGoogle Scholar
Sokolova, E., Cámara, F., Abdu, Y.A., Hawthorne, F.C., Horváth, L. and Pfenninger-Horváth, E. (2015b) Bobshannonite, Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4O4 (OH)4(O,F)2, a new TS-block mineral from Mont Saint-Hilaire, Québec, Canada: Description and crystal structure. Mineralogical Magazine, 79, 1791—1811.CrossRefGoogle Scholar
Vrána, S., Rieder, M. andGunter, M.E. (1992) Hejtmanite, a manganese-dominant analogue of bafertisite, a new mineral. European Journal of Mineralogy, 4, 35–13.CrossRefGoogle Scholar
Wilson, A.J.C.. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Yamnova, N.A., Egorov-Tismenko, Yu.K. and Pekov, I.V. (1998) Crystal structure of perraultite from the coastal region of the Sea of Azov. Crystallography Reports, 43, 401410.Google Scholar
Zhou, H., Rastsvetaeva, R.K., Khomyakov, A.P., Ma, Z. and Shi, N. (2002) Crystal structure of new micalike titanosilicate-bussenite, Na2Ba2Fe2+ [TiSi2O7][CO3] O(OH)(H2O)F. Crystallography Reports, 47, 43–6.CrossRefGoogle Scholar
Supplementary material: File

Sokolova et al. supplementary material

CIF

Download Sokolova et al. supplementary material(File)
File 41 KB
Supplementary material: File

Sokolova et al. supplementary material

structure factors

Download Sokolova et al. supplementary material(File)
File 243 KB