Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T19:23:59.515Z Has data issue: false hasContentIssue false

Fresh and weathered pyrochlore studies by Fourier transform infrared spectroscopy coupled with thermal analysis

Published online by Cambridge University Press:  05 July 2018

M. Nasraoui
Affiliation:
Département de Géochimie, Ecole des Mines de Saint Etienne, 158, Cours Fauriel 42023, Saint Etienne Cedex 02, France
E. Bilal
Affiliation:
Département de Géochimie, Ecole des Mines de Saint Etienne, 158, Cours Fauriel 42023, Saint Etienne Cedex 02, France
R. Gibert
Affiliation:
Département de Géochimie, Ecole des Mines de Saint Etienne, 158, Cours Fauriel 42023, Saint Etienne Cedex 02, France

Abstract

Fresh and weathered pyrochlore from the Lueshe carbonatite complex (in the northeast of the Democratic Republic of Congo) was studied by Fourier transfom infrared (FTIR) spectroscopy and by a combination of FTIR spectroscopy and thermal analysis. The former was carried out in the spectral range 400–4000 cm−1. The spectra for fresh and weathered pyrochlores were very different. For the weathered pyrochlore, two bands were identified as OH vibration modes, one broad band with a maximum at 3413 cm−1 and another finer band at 1630 cm−1. The fresh pyrochlore does not show OH absorption bands. The presence of OH confirms the hydrated state of the weathered pyrochlore suggested by previous microanalytical work. The combination of FTIR spectroscopy and thermal analysis allows ‘real-time’ observation of gas emanations and solid-state transformations taking place during heating up to 800°C. For fresh pyrochlore, no solid transformation was detected, except a CO2 emanation from 242–576°C. For the weathered pyrochlore a dehydration was observed between 234–565°C followed by an exothermic peak in Differential Scanning Calorimetric (DSC) curve at 604°C. This exothermic peak corresponds to the formation of a Nb oxide phase. At higher temperatures the weathered pyrochlore is partly decomposed, forming a dehydrated pyrochlore and a Nb oxide phase. The combination of FTIR and thermal analysis has provided useful information on both fresh and weathered pyrochlore transformations which has clarified our understanding of the water control of the structural stability of pyrochlore minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Instituto Technologico e Nuclear, EN10, 2686-953, Sacavém, Portugal

References

Albers, K.H., Alegria, B., Meixner, K.-T., Schuermann, B., Phillipo, S., Naud, J., Verkaeren, J., Nasraoui, M., Bilal, E., Garcia, D., Gruffat, J.J., Guy, B., Moutte, J., Wall, F., Williams, C.T. and Woolley, A.R. (1994) Applied mineralogy of pyrochlore and related minerals in the weathering zones of the niobium deposits of the Lueshe and Bingo carbona- tites, Zaire. Final Report to European Commission. EC Contract No: MA2M-CT90-0038. Unpublished. 138 pp.Google Scholar
Alder, H.H. and Kerr, P.F. (1962) Infrared study of aragonite and calcite. Amer. Mineral., 47, 700–11.Google Scholar
Bellon, H. and Pouclet, A. (1980) Datations K/Ar de quelques laves du Rift-Ouest de l'Afrique Centrale; implication sur l'évolution magmatique et structurale. Geol. Runds., 69, 4962.CrossRefGoogle Scholar
De Bethune, P. (1949) Sur les manifestations bénignes du métamorphisme. Acad. Roy. Belg. Bull. Classe des Sciences, 5(t35), 1073–88.Google Scholar
De Bethune, P. (1952) Etudes pétrographiques dans les monts Rwindi (Kivu, Congo Belge). Mém. hist. Géol. Univ. Louvain, 16, 221–9.Google Scholar
Earnest, C.M. (1988) Compositional analysis by thermogravimetry. ASTM Spec Tech Publ., 997, Philadelphia.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1994) The structural chemistry of kalipyrochlore, a ‘hydropyro-chlore’. Canad. Mineral., 32, 415–20.Google Scholar
Gorzhevskaya, S.A and Sidorenko, G.A. (1962) Phases obtained by heating minerals with pyrochlore structure and the relation of these phases to the chemical composition of the original minerals. Geokhimiya, 9, 794–9.Google Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. Amer. Mineral., 62, 403–10.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In Carbonatites: Genesis and Evolution (Bell, K., ed.). Unwin Hyman, London, 105–48.Google Scholar
Krivokoneva, G.K. and Sidorenko, G.A. (1971) The essence of the metamict transformation in pyrochlores. Geochem. Int., 8, 113–22.Google Scholar
Kulp, J.L., Volchok, H.L and Holland, H.D. (1952) Age from metamict minerals. Amer. Mineral., 37, 709–18.Google Scholar
Lindqvist, K. and Rehtijärvi, P. (1979) Pyrochlore from the Sokli carbonatite complex, Northern Finland. Bull. Geol. Soc. Finland, 51, 8193.CrossRefGoogle Scholar
Lubala, R.T, Kampunzu, A.B. and Makutu, M.N. (1985) Un inventaire des complexes anorogeniques du Burundi, du Rwanda et du Zaïre. J. African Earth Sci,. 3(1/2), 169–74.Google Scholar
Lumpkin, G.R. (1989) Alpha-decay damage, geochemical alteration, and crystal chemistry of pyrochlore group minerals. Ph.D. thesis, University of New Mexico, Albuquerque.Google Scholar
Lumpkin, G.R and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Amer. Mineral., 80, 732–43.CrossRefGoogle Scholar
Lumpkin, G.R., Chakoumakos, B.C and Ewing, R.C. (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. Amer. Mineral., 71, 569–88.Google Scholar
Mackenzie, R.C. (1972) Differential thermal analysis, Vol. 1. Fundamental aspects and Vol. 2 Applications. Academic Press, New York.Google Scholar
Maravic, H.V. and Morteani, G. (1980) Petrology and geochemistry of the carbonatite and syenite complex of Lueshe (N.E. Zaïre). Lithos., 13, 159–70.CrossRefGoogle Scholar
Maravic, H.V., Morteani, G. and Roethe, G. (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu, NE-Zaïre: petrographic and geochemical studies and its economic significance. J. African Earth Sci., 9(2), 341–55.CrossRefGoogle Scholar
Meyer, A. (1958) La carbonatite de Lueshe (Kivu). Congo Belge, 4e Direction Générale, Service Géologique, Bulletin n° 8-Fasc. 5. 8 pp.Google Scholar
Nasraoui, M. (1996) Le gisement de niobium de Lueshe (Nord Est du Zaïre): Evolutions géochimique et minéralogique d'un complexe carbonatitique en contextes hydrothermal et supergène. Ph.D. thesis, Geology and Mining Research, Ecole des Mines de Paris/Ecole des Mines de Saint Etienne, 256 pp.Google Scholar
Nasraoui, M. and Bilal, E. (1997) Pyrochlore from Lueshe carbonatite: a geochemistry memory of different alteration stages. (in prep.)Google Scholar
Phillipo, S. (1995) Evaluation minéralogique par diffraction des rayons X qualitative et quantitative des gisements latéritiques de niobium de la Lueshe et de Bingo dans le cadre de l'optimisation de la récupération du pyrochlore. Ph.D. thesis, Université Catholique de Louvain, 207 pp.Google Scholar
Stoch, L. (1991) Internal thermal reactions of minerals. In Thermal Analysis in the Geosciences. (Smykatz-Kloss, W. and Warne, S.St.J., eds.) Springer-Verlag Vol. 38, 118–33.CrossRefGoogle Scholar
Todor, D.N. (1976) Thermal Analysis of Minerals. Abacus Press, Tunbridge Wells, UK.Google Scholar
Van Overbeke, A.C. (1996) Le complexe à carbonatite et syénite de Lueshe (N. Kivu, Zaïre): pétrogenèse des roches ignées et caractérisation géochimique des processus métasomatiques (fénitisation). Ph.D. thesis, Université Catholique de Louvain, 235 pp.Google Scholar
Van Wambeke, L. (1978) Kalipyrochlore, a new mineral of the pyrochlore group. Amer. Mineral., 63, 528–30.Google Scholar
Wall, F., Williams, C.T., Woolley, A.R. and Nasraoui, M. (1996) Pyrochlore from weathered carbonatite at Lueshe. Zaire. Mineral. Mag., 60, 731–50.CrossRefGoogle Scholar
Warne, S.St.J. (1987) Applications of thermal analysis to carbonate mineralogy. Thermochim. Acta, 110, 501–11.CrossRefGoogle Scholar
White, W.B. (1974) The Carbonate Minerals. In The Infrared Spectra of Minerals, (Farmer, V.C., ed.), Mineralogical Society Monograph 4, 227–84.CrossRefGoogle Scholar