Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T06:20:46.440Z Has data issue: false hasContentIssue false

Forsterite dissolution in superheated basaltic, andesitic and rhyolitic melts

Published online by Cambridge University Press:  05 July 2018

C. H. Donaldson*
Affiliation:
Department of Geology, University of St Andrews, Fife, KY16 ST, Scotland

Abstract

Dissolution rates of small forsterite spheres in superheated melts of basalt, andesite and rhyolite composition have been measured at 1300°C, atmospheric pressure. The rate is constant (83 µm hr−1) in the basalt, regardless of run duration. In the andesite the initial dissolution rate is 200µm hr−1, followed by a decrease to a constant value of 16µmhr−1 in 2–3 hours. Dissolution rate in the rhyolite decreases from an initial value of 1.7 to <0.1 µmhr−1 over 280 hours and never reaches a constant rate. Once the rate of dissolution has become constant, the film of contaminated melt that forms in melt about a crystal does not thicken with time, indicating attainment of a steady-state condition. Steady state is attributed to natural convection arising from the difference in density between the film of contaminated melt surrounding a crystal and that beyond. The density difference is approximately 2% of the density of the rock melt.

Type
Geochemistry and Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, N. L. (1913) Amer. J. Sci. 35, 577-99.CrossRefGoogle Scholar
Brearley, M. and Scarfe, C. M. (1986) J. Petrol. 27, 1157-82.CrossRefGoogle Scholar
Christian, J. W. (1965) The Theory of Transformations in Metals and Alloys. 973 pp. Pergamon, New York.Google Scholar
Corrigan, G. and Gibb, F. G. F. (1979) Mineral. Mag. 43, 121-6.CrossRefGoogle Scholar
Donaldson, C. H. (1979) Ibid. 43, 115-19.Google Scholar
Donaldson, C. H. (1985) Ibid. 49, 683-93.Google Scholar
Donaldson, C. H. (1986) In Kinetics and Mass Transport in Silicate and Oxide Systems (Freer, R. and Dennis, P. F., eds.) Trans Tech Publications, 267-74.Google Scholar
Donaldson, C. H. and Hamilton, D. L. (1987) Nature, 327, 413-15.CrossRefGoogle Scholar
Donaldson, C. H. and Henderson, C. M. B. (1988) Mineral. Mag. 52, 27-34.CrossRefGoogle Scholar
Hebditch, D. J, and Hunt, J. D. (1973) Metall. Trans. 45, 2008-10.CrossRefGoogle Scholar
Kuo, L.-C. and Kirkpatrick, R. J. (1985) Amer. J. Sci. 285, 51-90.CrossRefGoogle Scholar
McBirney, A. R., Baker, B. H. and Nilson, R. H. (1985) J. Volc. Geoth. Res. 24, 1-24.CrossRefGoogle Scholar
Mo, X., Carrnichael, I. S. E., Rivers, M. and Stebbins, J. (1982) Mineral. Mag. 45, 237-45.CrossRefGoogle Scholar
Morse, S. A. (1986) J. Petrol, 27, 1183-214.CrossRefGoogle Scholar
Oishi, Y., Cooper, A. R. and Kingery, W, D. (1965) J. Amer. Ceram. Soc. 48, 88-94.CrossRefGoogle Scholar
Roeder, P. L. and Emslie, R. F. (1970) Contrib. Mineral. Petrol. 29, 275-89.CrossRefGoogle Scholar
Sack, R. O., Carmichael, I. S. E., Rivers, M. and Ghiorso, M. S. (1980) Ibid. 75, 369-76.Google Scholar
Shaw, H. R. (1972) Amer. J. Sci. 272, 870-93.CrossRefGoogle Scholar
Thornber, C. R. and Huebner, J. S. (1985) Amer. Mineral. 70, 934-45.Google Scholar
Turner, J. S. and Campbell, I. H. (1986) Earth Sci. Revs. 23, 255-352.CrossRefGoogle Scholar
Wilcox, W. R. (1983) J, Crystal Growth, 65, 133-42.CrossRefGoogle Scholar
Zhang, Y., Walker, D. and Lesher, C. E. (1987) EOS, Trans. Amer. Geophys. Union, 68, 429.Google Scholar