Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T19:39:35.708Z Has data issue: false hasContentIssue false

Fluorcalciomicrolite, (Ca,Na,☐)2Ta2O6F, a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil

Published online by Cambridge University Press:  05 July 2018

M. B. Andrade
Affiliation:
Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721, USA
D. Atencio*
Affiliation:
Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil
A. I. C. Persiano
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627, 30123-970, Belo Horizonte, MG, Brazil
J. Ellena
Affiliation:
Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
*

Abstract

Fluorcalciomicrolite, (Ca, Na, ☐)2Ta2O6F, is a new microlite-group, pyrochlore supergroup mineral approved by the CNMNC (IMA 2012-036). It occurs as an accessory mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals include: microcline, albite, quartz, muscovite, spodumene, “lepidolite”, cassiterite, tantalite-(Mn), monazite-(Ce), fluorite, “apatite”, beryl, “garnet” , epidote, magnetite, gahnite, zircon, “tourmaline” , bityite, hydrokenomicrolite, and other microlite-group minerals under study. Fluorcalciomicrolite occurs as euhedral, untwinned, octahedral crystals 0.1–1.5 mm in size, occasionally modified by rhombododecahedral faces. The crystals are colourless and translucent; the streak is white, and the lustre is adamantine to resinous. It does not fluoresce under ultraviolet light. Mohs' hardness is 4½–5, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 6.160 g/cm3. The mineral is isotropic, ncalc. = 1.992. The Raman spectrum is dominated by bands of B–X octahedral bond stretching and X–B–X bending modes. The chemical composition (n = 6) is (by wavelength dispersive spectroscopy, H2O calculated to obtain charge balance, wt.%): Na2O 4.68, CaO 11.24, MnO 0.01, SrO 0.04, BaO 0.02, SnO20.63, UO20.02, Nb2O53.47, Ta2O576.02, F 2.80, H2O 0.48, O=F–1.18, total 98.23. The empirical formula, based on 2 cations at the B site, is (Ca1.07Na0.810.12)Σ2.00(Ta1.84Nb0.14Sn0.02)Σ2.00[O5.93(OH)0.07]6.00[F0.79(OH)0.21]. The strongest eight X-ray powder-diffraction lines [d in Å (I)(hkl)] are: 5.997(59)(111), 3.138(83)(311), 3.005(100)(222), 2.602(29)(400), 2.004(23)(511), 1.841(23)(440), 1.589(25)(533), and 1.504(24)(444). The crystal structure refinement (R1 = 0.0132) gave the following data: cubic, Fdm, a = 10.4191(6) Å, V = 1131.07(11) Å3, Z = 8.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, M.B., Atencio, D., Menezes Filho, L.A.D. and Ellena, J., (2011) The crystal structure of a microlitegroup mineral with a formula near NaCaTa2O6F from the Morro Redondo mine, Coronel Murta, Minas Gerais, Brazil. The Canadian Mineralogist, 49, 615621.CrossRefGoogle Scholar
Andrade, M.B., Atencio, D., Chukanov, N.V. and Ellena, J., (2013) Hydrokenomicrolite , (□,H2O)2Ta2(O,OH)6(H2O), a new microlite-group mineral from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. American Mineralogist, 98, 292296.CrossRefGoogle Scholar
Arenas, D.J., Gasparov, L.V., Qiu, W., Nino, J.C., Patterson, C.H. and Tanner, D.B. (2010) Raman study of phonon modes in bismuth pyrochlores. Physical Review B, 82, 214302..CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Baldwin, J.R. (1989) Replacement phenomena in tantalum minerals from rare-metals pegmatites in South Africa and Namibia. Mineralogical Magazine, 53, 571581.CrossRefGoogle Scholar
Bruker, (2004) APEX2 and SAINT, SADABS and SHELTXTL. Bruker AXS Inc., Madison, Wisconsin.Google Scholar
Christy, A.G. and Atencio, D., (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.CrossRefGoogle Scholar
Chudík, P., Uher, P., Gadas, P., Škoda, R. and Pršek, J (2011) Niobium-tantalum oxide minerals in the Jezuitské Lesy granitic pegmatite, Bratislava Massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be, Cs-rich and Li,B-poor dike. Mineralogy and Petrology, 102, 1527.CrossRefGoogle Scholar
Francesconi, R. (1972) Pegmatitos da regia˜o de São Joa˜o del Rei – MG. PhD thesis, Universidade de São Paulo, São Paulo, Brazil, 101 pp.Google Scholar
Geisler, T., Berndt, J., Meyer, H.W., Pollok, K., and Putnis, A., (2004) Low-temperature aqueous alteration of crystalline pyrochlore: correspondence between Nature and experiment. Mineralogical Magazine, 68, 905922.CrossRefGoogle Scholar
Glerup, M., Nielsen, O.F. and Poulsen, F.W. (2001) The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling. Journal of Solid State Chemistry, 160, 2532.CrossRefGoogle Scholar
Hawthorne, F.C. (2002) The use of end-member chargearrangements in defining new mineral species and heterovalent substitutions in complex minerals. The Canadian Mineralogist, 40, 699710.CrossRefGoogle Scholar
Heinrich, E.W.M. (1964) Tin-tantalum-lithium pegmatites of the Sao Joao Del Rei district, Minas Gerais, Brazil. Economic Geology, 59, 9821002.CrossRefGoogle Scholar
Huang, X.L., Wang, R.C., Chen, X.M., Hu, H., and Liu, C.S. (2002) Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40, 10471068.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography IV. The Kynoch Press, Birmingham, U.K.Google Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35, 153165.Google Scholar
Le Berre, F., Marie-Pierre, C.L., Galven, C., Fourquet, J.L., Legein, C., Body, M., and Buzaré, J.Y. (2007) Ca2+/vacancies and O2-/F ordering in new oxyuoride pyrochlores Li2xCa1.5-x□0.5-xM2O6F (M = Nb,Ta) for 04x40.5. Dalton Transactions,23, 24572466.Google Scholar
Lumpkin, G.R., Chakoumakos, B.C. and Ewing, R.C. (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. American Mineralogist, 71, 569588.Google Scholar
Ohnenstetter, D. and Piantone, P., (1992) Pyrochloregroup minerals in the Beauvoir peraluminous leucogranite, Massif Central, France. The Canadian Mineralogist, 30, 771784.Google Scholar
Oliveira, E.A., Guedes, I., Ayala, A.P., Gesland, J.-Y., Ellena, J., Moreira, R.L. and Grimsditch, M., (2004) Crystal structure and vibrational spectrum of the NaCaMg2F7 pyrochlore. Journal of Solid State Chemistry, 177, 29432950.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Siegrist, T., Cava, R.J. and Krajewski, J.J. (1997) Reduced alkaline earth tantalates. Materials Research Bulletin, 32, 881887.CrossRefGoogle Scholar
Subramanian, M.A., Aravamudan, G., and Rao, V.S. (1983) Oxide pyrochlores – a review. Progress in Solid State Chemistry, 15, 55143.CrossRefGoogle Scholar
Tindle, A.G. and Breaks, F.W. (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. The Canadian Mineralogist, 36, 609635.Google Scholar
Tindle, A.G., Selway, J.B. and Breaks, F.W. (2005) Liddicoatite and associated species from the McCombe spodumene-subtype rare-element granitic pegmatite, northwestern Ontario, Canada. The Canadian Mineralogist, 43, 769793.CrossRefGoogle Scholar
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegener , R. and Pollmann, H. (2011) Fluornatromicrolite, (Na,Ca,Bi)2Ta2O6F, a new mineral species from Quixabá, Paraíba, Brazil. The Canadian Mineralogist, 49, 11051110.CrossRefGoogle Scholar