Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T18:01:47.178Z Has data issue: false hasContentIssue false

Fluid inclusion and stable isotope evidence for the origin of mineralizing fluids in south-west England

Published online by Cambridge University Press:  05 July 2018

D. H. M. Alderton
Affiliation:
Department of Geology, RHB New College, University of London, Egham, Surrey TW20 0EX, U.K.
R. S. Harmon
Affiliation:
NERC Isotope Geosciences Laboratory, Keyworth, Nottingham NG12 5GG, U.K.

Abstract

The oxygen and hydrogen isotope composition of hydrothermal fluids associated with the Variscan granites of southwest England has been inferred from analysis of various silicate minerals (predominantly quartz) and by direct analysis of fluid inclusions within quartz and fluorite. These data have been combined with the results of a fluid inclusion study to develop a model for the origin and evolution of hydrothermal fluids in the region. Magmatic fluids expelled from the granites had compositions in the range δD = −65 to −15‰, and δ18O = 9 to 13‰. Respective temperature, salinity, fluid δD, and fluid δ18O values for the (i) early Sn-W mineralization, (ii) later Cu-Pb-Zn sulphide mineralization, and (iii) latest ‘crosscourse’ Pb-Zn-F mineralization are: (i) 230–400 °C, 5–15 wt.% NaCl equiv., −39 to −16‰, and 7.0 to 11.2‰, (ii) 220–300 °C mostly 2–8 wt.% NaCl equiv., −41 to −9‰, and 2.3 to 8.1‰, and (iii) 110–150 °C 22–26 wt.% NaCl equiv., −45 to +2‰, and −1.8 to +5.5‰. These data highlight the important role of both magmatic fluids exsolved from the crystallizing granite, and basinal brines circulating within restricted fracture systems.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderton, D. H. M., Thompson, M., Rankin, A. H., and Chryssoulis, S. L. (1982) Chem. Geol., 37, 203–13.CrossRefGoogle Scholar
Behr, H. J. and Gerler, J. (1987) Ibid. 61, 65-77.Google Scholar
Bray, C. (1980) Mineralisation, greisenisation and kaolinisation at Goonbarrow china clay pit, Cornwall, UK. Unpubl. Ph.D thesis, University of Oxford.Google Scholar
Brown, G. C., Ixer, R. A., Plant, J. A., and Webb, P. C. (1987) Trans, Inst. Mining Metall. (Section B: Applied Earth Sci.), 96, 6576.Google Scholar
Burnham, C. W. (1979) In Geochemistry of hydrother- mal ore deposits, 2nd ed. (Barnes, H. L., ed.). John Wiley, 71136.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1963) Geochim. Cosmochim. Acta, 27, 4352.CrossRefGoogle Scholar
Connolly, C. A., Walter, L. M., Baadsgaard, H., and Longstaffe, F. J. (1990) Appl. Geochem., 5, 397–113.CrossRefGoogle Scholar
Craig, H. (1961) Science, 133, 1702–3.CrossRefGoogle Scholar
Darbyshire, D. P. F., and Shepherd, T. J. (1985) J. Geol. Soc. London, 142, 1159–77.CrossRefGoogle Scholar
Dewey, H. (1925) Proc. Geol. Assoc. London, 36, 107–35.CrossRefGoogle Scholar
Dill, H. and Nielsen, H. (1987) J. Geol. Soc. London, 144, 97105.CrossRefGoogle Scholar
Edmunds, W. M., Andrews, J. N., Burgess, W. G., Kay, R. L. F., and Lee, D. J. (1984) Mineral. Mag., 48, 407–24.CrossRefGoogle Scholar
Hall, W. E. and Friedman, I. (1963) Econ. Geol., 58, 886911.CrossRefGoogle Scholar
Halliday, A. N. (1980) Ibid. 75, 752-9.Google Scholar
Halls, C. (1987) Proc. Ussher Soc., 6, 548–54.Google Scholar
Jackson, N. J., Halliday, A. N., Sheppard, S. M. F., and Mitchell, J. G. (1982) In Metallization associated with acid magmatism (Evans, A. M., ed.). John Wiley, 137-79.Google Scholar
Jackson, N. J., Willis-Richards, J., Manning, D. A. C., and Sams, M. S. (1989) Econ. Geol, 84, 1101–33.CrossRefGoogle Scholar
Kharaka, Y. K. and Carothers, W. W. (1986) In Handbook of environmental isotope geochemistry. Elsevier, 305-53.Google Scholar
Knauth, L. P. and Beeunas, M. A. (1986) Geochim. Cosmochim. Acta, 50, 419–33.CrossRefGoogle Scholar
Matsuhisa, Y., Goldsmith, J. R., and Clayton, R. N. (1979) Ibid. 43, 1131-0.Google Scholar
McLimans, R. K. (1977) Geologic, fluid inclusion, and stable isotope studies of the Upper Mississippi Valley zinc—lead district, southwest Wisconsin. Unpubl. Ph.D Thesis, Pennsylvania State University.Google Scholar
Primmer, T. J. (1985) Proc. Ussher Soc, 6, 224–8.Google Scholar
Rankin, A. H. and Alderton, D. H. M. (1985) In High heat production (HHP) granites, hydrothermal circulation and ore genesis. Instn. Mining Metall., London, 287-99.Google Scholar
Roedder, E. (1984) Fluid inclusions (Reviews in Mineralogy, vol. 12) Min. Soc. America.CrossRefGoogle Scholar
Samms, M. S. and Thomas-Betts, A. (1988) J. Geol. Soc. London, 145, 809–17.CrossRefGoogle Scholar
Shepherd, T. J. and Scrivener, R. C. (1987) Proc. UssherSoc, 6, 491–7.Google Scholar
Shepherd, T. J. Miller, M. F., Scrivener, R. C., and Darbyshire, D. P. F. (1985) In High heat production (HHP) granites, hydrothermal circulation and ore genesis. Instn. Mining Metall., London, 345-64.Google Scholar
Sheppard, S. M. F. (1977) J. Geol. Soc. London, 133, 573–91.CrossRefGoogle Scholar
Sheppard, S. M. F. (1986) In Stable isotopes in high temperature geological processes (Valley, J. W., Taylor, H. P., and O'Neil, J. R., eds.) Reviews in Mineralogy, vol. 16, 165-83, Min. Soc. America.Google Scholar
Simpson, P. R., Brown, G. C., Plant, J., and Ostle, D. (1979) Phil. Trans. R. Soc. London, A291, 385-112.Google Scholar
Smith, A. J. (in press) In The offshore geology of England and Wales (Chapter 15). Scottish and Academic Press.Google Scholar
Suzuoki, T. and Epstein, S. (1976) Geochim. Cosmochim. Acta, 40, 1229–40.CrossRefGoogle Scholar
Taylor, H. P. (1977) J. Geol. Soc. London, 133, 509–58.CrossRefGoogle Scholar
van Marcke de Lummen, G. (1985) Proc. Ussher Soc., 6, 211–17.Google Scholar
Viglino, J. A., Harmon, R. S., Borthwick, J., Nehring, N. L., Motyka, R. J., White, L. D., and Jonston, D. A. (1985) Chem. Geol., 49, 141–57.CrossRefGoogle Scholar