Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T20:13:42.313Z Has data issue: false hasContentIssue false

Extension of the melilite-carbonatite province in the Apennines of Italy: the kamafugite of Grotta del Cervo, Abruzzo

Published online by Cambridge University Press:  05 July 2018

F. Stoppa*
Affiliation:
Dipartimento di Scienze della Terra, Università G.d'Annunzio, Chieti, Italy
A. R. Woolley
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
A. Cundari
Affiliation:
Dipartimento di Geofisica e Vulcanologia, Università Federico II, Napoli, Italy
*

Abstract

A new occurrence of a rare kamafugite near L'Aquila, Abruzzo, is described in detail to characterize its paragenesis and to establish possible genetic links with similar alkaline mafic igneous rocks from the Oricola-Camerata Nuova (OC) volcanic field, ˜20 km to the west. Both occurrences belong to the Umbria-Latium-Ultralkaline-District (ULUD), an igneous district represented by rare kamafugites and carbonatites and distinct from the much more voluminous Roman Region (RR) rocks. The new kamafugite was found in a cave known as Grotta del Cervo (GC), associated with epiclastic and pyroclastic rocks. In the latter, lapilli ash tuff, welded lapilli, ultramafic xenoliths, cognate lithics and pelletal lapilli have been identified. The mineralogy of the welded lapilli comprises, in order of decreasing abundance, diopside, leucite, haüyne, Mg-mica, andraditic garnet, apatite, magnetite, kalsilite and olivine. The rock is carbonate-free. Based on bulk-rock chemistry it is classified as a kamafugite, closely approaching the composition of ULUD kamafugites, according to Sahama's (1974) criteria. Separate lapilli ash tuff, characterized by the same silicate mineralogy as that of the welded lapilli, plus modal carbonate exceeding 10 wt.%, is classified as a carbonatitic kamafugite. Bulk-rock and trace-element compositions confirm that the Grotta del Cervo rocks closely approach the ULUD analogues.

The Grotta del Cervo occurrence partially fills the geographical and compositional gap between ULUD rocks and the rocks from the Vulture Complex, also a carbonatite and melilitite locality ˜200 km south of GC, and adds considerably to the bulk of kamafugitic and related rocks lying along the Italian Apennines. The petrogenesis of these kamafugites rocks is discussed and possible mineralogical similarities with the Roman Region rocks are highlighted.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, S. (1994) Lithostratigraphic and tectonic characteristics of the Pietrasecca basin (Carsoli, Abruzzo – Central Italy). Memorie Istituto Italiano di Speleologia, 5, 1322.Google Scholar
Bailey, D.K. and Collier, J.D. (2000) Carbonatite-melilitite association in the Italian collision zone and the Ugandan rifted craton: significant common factors. Mineralogical Magazine, 64, 675682.CrossRefGoogle Scholar
Barbieri, M., Barbieri, M. Jr., D'Orefice, M., Graciotti, R. and Stoppa, F. (2001) Il vulcanismo monogenico medio-p leistocenico della conca di Carsoli (L'Aquila). Geologica Romana, in press.Google Scholar
Bertolani, M., Lugli, S. and Rossi, A. (1994) Studio petrografico delle grotte di attraversamento di Pietrasecca (L'Aquila). Memorie Istituto Italiano di Speleologia, 5, 7183.Google Scholar
Castorina, F., Stoppa, F., Cundari, A. and Barbieri, M. (2000) An enriched mantle source for Italy's melilitite-carbonatite association as inferred by its Nd-Sr isotope signature. Mineralogical Magazine, 64, 625640.CrossRefGoogle Scholar
Comodi, P., Liu, Yu., Stoppa, F. and Woolley, A.R. (1999) A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineralogical Magazine, 63, 661672.CrossRefGoogle Scholar
Cundari, A. (1973) Petrology of leucite-bearing lavas in New South Wales (Australia). Journal of the Geological Society of Australia, 20, 465492.CrossRefGoogle Scholar
Cundari, A. (1979) Petrology of leucite-bearing lavas in the Roman Volcanic Region, Italy. The Sabatini lavas. Contributions to Mineralogy and Petrology, 70, 921.CrossRefGoogle Scholar
Cundari, A. (1982) Petrology of pyroxenite ejecta from Somma-Vesuvius and their genetic implications. Tschermaks Mineralogie und Petrographie Mitteilungen, 30, 189204.CrossRefGoogle Scholar
Cundari, A. and Ferguson, A.K. (1991) Petrogenetic relationship between melilitite and lamproite in the Roman Region: the lavas of S.Venanzo and Cupaello. Contributions to Mineralogy and Petrology, 107, 343357.CrossRefGoogle Scholar
De La Roche, H. (1986) Classification et nomenclature des roches ignées: un essai de restauration de la convergence entre systématique quantitative, typologie d'usage et modèllisation génétique. Bulletin de la Societé Géologique de France, 8, 337353.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to Rock-forming Minerals. Addison Wesley Longman Ltd., Essex, UK.Google Scholar
Di Battistini, G., Montanini, A., Vernia, L., Bargossi, G.M. and Castorina F. (1998) Petrology and geochemistry of ultrapotassic rocks from the Montefiascone Volcanix Complex (Central Italy): magmatic evolution and petrogenesis. Lithos, 43, 169195.CrossRefGoogle Scholar
Eggler, D.H. (1989) Carbonatites, primary melts and mantle dynamics. Pp. 105148 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Federico, M., Peccerillo, A., Barbieri, M. and Wu, T.W. (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hills Volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology, 115, 384401.CrossRefGoogle Scholar
Gueguen, E., Dogliosi, C. and Fernandez, M. (1997) Litho spheric boudinage in the Western Mediterranean back-arc basin. Terra Nova, 9, 184187.CrossRefGoogle Scholar
Hoschek, G. (1974) Gehlenite stability in the system CaO-Al2O3-SiO2-H2O-CO2 . Contributions to Mineralogy and Petrology, 47, 245254.CrossRefGoogle Scholar
Lavecchia, G. and Boncio, P. (2000) Tectonic setting of the carbonatite -melilitite association of Italy. Mineralogical Magazine, 64, 583–92.CrossRefGoogle Scholar
Lavecchia, G. and Stoppa, F. (1992) The tectonic significance of Italian magmatism: an alternative view to the popular interpretation. Terra Nova, 8, 435446.CrossRefGoogle Scholar
Lupini, L., Williams, C.T. and Woolley, A.R. (1992) Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy. Mineralogical Magazine, 56, 581586.CrossRefGoogle Scholar
Luth, W.C. (1967) Studies in the system KAlSiO4-MgSiO4-SiO2-H2O: Inferred phase relations and petrologic application. Journal of Petrology, 8, 372416.CrossRefGoogle Scholar
Mitchell, R.H. and Bergman, S.C. (1991) Petrology of Lamproites. Plenum Press, New York and London.CrossRefGoogle Scholar
Modreski, P.J. and Boettcher, A.L. (1972) The stability of phlogopite + enstatite at high pressures; a model for micas in the interior of the Earth. American Journal of Science, 273, 385414.CrossRefGoogle Scholar
Morimoto, N., Fabriès, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A. and Zussman, Z. (1988) Nomenclature of pyroxenes. Bulletin de Mineralogie, 111, 535550.CrossRefGoogle Scholar
Sahama, Th.G. (1974) Potassium rich alkaline rocks. Pp. 96109 in: The Alkaline Rocks. John Wiley & Sons, London.Google Scholar
Stoppa, F. and Cundari, A. (1995) A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contributions to Mineralogy and Petrology, 122, 275288.CrossRefGoogle Scholar
Stoppa, F. and Cundari, A. (1998) Origin and multiple crystallization of the kamafugite-carbonatite association at S.Venanzo-Pian di Celle, Umbria, Italy. Mineralogical Magazine, 62, 273289.CrossRefGoogle Scholar
Stoppa, F. and Lavecchia, G. (1992) Late Pleistocene ultra-alkaline magmatic activity in the Umbria-Latium region (Italy): an overview. Journal of Volcanology and Geothermal Research, 52, 277293.CrossRefGoogle Scholar
Stoppa, F. and Lupini, L. (1993) Mineralogy and petrology of the Polino monticellite-calciocarbonatite (Central Italy). Mineralogy and Petrology, 49, 213231.CrossRefGoogle Scholar
Stoppa, F. and Principe, C. (1998) High energy eruption of carbonatitic magma at Mt. Vulture (Southern Italy): the Monticchio Lakes Formation. Journal of Volcanology and Geothermal Research, 80, 137153.CrossRefGoogle Scholar
Stoppa, F. and Woolley, A.R. (1997) The Italian carbonatites: field occurrence, petrology and regional significance. Mineralogy and Petrology, 59, 4367.CrossRefGoogle Scholar
Stoppa, F., Sharygin, V.V. and Cundari A. (1997) New mineral data from the kamafugite-carbonatite association: the melilitolite from Pian di Celle. Italy. Mineralogy and Petrology, 61, 2745.CrossRefGoogle Scholar
Tilley, C.E. and Yoder, H.S. (1968) The pyroxenite facies conversion of volcanic and subvolcanic, melilitite-bearing and other alkali ultramafic assemblages. Carnegie Institute of Washington Yearbook, 66, 457460.Google Scholar
Williams, C.T. and Spratt, J. (1995) Electron microprobe techniques in mineral analysis. Journal of the Russell Society, 6, 512.Google Scholar
Woolley, A.R. and Kempe, D.R.C. (1989) Carbonatites: nomenclature, average chemical compositions and element distribution. Pp. 105148 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Yoder, H.S. (1975) Relationships of melilitite-bearing rocks to kimberlite: a preliminary report on the system Akermanite-CO2 . Physics and Chemistry of the Earth, 9, 883894.CrossRefGoogle Scholar