Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:57:12.753Z Has data issue: false hasContentIssue false

Exsolution structures in calcic pyroxenes from the Bjerkreim-Sokndal lopolith, SW Norway

Published online by Cambridge University Press:  05 July 2018

F. J. M. Rietmeijer
Affiliation:
Department of Petrology, Instituut voor Aardwetenschappen, Budapestlaan 4, 3508 TA Utrecht, The Netherlands
P. E. Champness
Affiliation:
Department of Geology, University of Manchester, Manchester M13 9PL

Abstract

Iron-rich (Fs:En ∼0.8) calcic pyroxenes that have been subjected to granulite-facies metamorphism contain up to seven generations of exsolution lamellae. They can be grouped into four stages. In stage 1 pigeonite exsolved parallel to ‘001’ and ‘100’ (where ‘hkl’ signifies ∼ (hkl)) and mostly inverted later to orthopyroxene. During stage 2 orthopyroxene exsolved parallel to (100), while during stage 3 orthopyroxene was quickly followed by metastable ‘001’ pigeonite. The stage 3 precipitates clearly grew and thickened together for some time. During stage 4 a ‘100’ pigeonite was exsolved. The stage 3 and 4 precipitates show evidence of reheating, dissolution and later, renewed growth. Sometimes orthopyroxenes of stage 3 have crossed a ‘001’ pigeonite lamella and caused it to invert by a shear mechanism.

Chemical analysis shows no rotation of the tie lines between Ca-rich and Ca-poor phases, in contrast to previous studies of Skaergaard and Bushveld pyroxenes. The geothermometers of Wood and Banno (1973) and Wells (1977) indicate solidus temperatures of about 850°C and 900°C respectively, but the geothermometers were found to be unsuitable for subsolidus conditions. We estimate the pressure to have been about 9 kbar during solidification. Estimates of nucleation temperatures obtained from the orientations of the exsolved lamellae (Robinson et al., 1977) were 850–700°C for stage 1, and 600–400°C for stage 3. We believe this geothermometer to be unreliable for the low temperatures involved in stage 4.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blander, M. (1972) Geochim. Cosmochim. Ada, 36, 787.CrossRefGoogle Scholar
Bohlen, S. R., and Essene, E. J. (1979) Lithos, 12, 335.CrossRefGoogle Scholar
Bohlen, S. R., and Boettcher, A. L. (1980) Earth Plan. Sci. Lett. 47, 11.CrossRefGoogle Scholar
Buchanan, D. L. (1979) J. Petrol. 20, 327.CrossRefGoogle Scholar
Burnham, C. W. (1965) Carnegie Inst. Washington Yearb. 64, 202.Google Scholar
Buseck, P. R., and Iijima, S. (1975) Am. Mineral. 60, 771.Google Scholar
Buseck, P. R., Nord, G. L. Jr., and Veblen, D. R. (1980) Reviews in Mineralogy, 7, Mineral. Soc. Am. 117.Google Scholar
Cameron, M., Sueno, S., Prewitt, C. T., and Papike, J. J. (1973) Am. Mineral. 58, 594.Google Scholar
Champness, P. E., and Copley, P. A. (1976) In Electron Microscopy in Mineralogy (Wenk, H.-R., ed.), Springer-Verlag, 228.Google Scholar
Champness, P. E., and Lorimer, G. W. (1982) In Interphase Boundaries in Solids (A. Chadwick, G. and A. Smith, D., eds.), Academic Press. In press.Google Scholar
Champness, P. E., Cliff, G., and Lorimer, G. W. (1981) Bull. Mineral. 104, 236.Google Scholar
Coleman, L. C. (1978) Contrib. Mineral. Petrol. 66, 221.CrossRefGoogle Scholar
Frisch, T., and Bridgwater, D. (1976) Ibid. 57, 25.Google Scholar
Hermans, G. A. E. M., Tobi, A. C., Poorter, R. P. E., and Maijer, C. (1975) Nor. Geol. Unders. 318, 51.Google Scholar
Huebner, J. J. (1980) Reviews in Mineralogy, 7, Mineral. Soc. Am., 213.Google Scholar
Isaacs, A. H., and Peacor, D. R. (1981) EOS 62, 434.Google Scholar
Ishii, T. (1975) Mineral J. Japan. 8, 48.CrossRefGoogle Scholar
Jaffe, H. W., Robinson, P. R., Tracy, R. J., and Ross, M. (1975) Am. Mineral. 60, 9.Google Scholar
Jaffe, H. W., (1978) Ibid. 63, 1116.Google Scholar
Kars, H., Jansen, J. B. H., Tobi, A. C., and Poorter, R. P. E. (1980) Contrib. Mineral. Petrol. 74, 235.CrossRefGoogle Scholar
Kretz, R. (1963) J. Geol. 71, 773.CrossRefGoogle Scholar
Lindsley, D. H., and Munoz, J. L. (1969) Am. J. Sci. 267-A, 295.Google Scholar
Lindsley, D. H., King, H. E. Jr.,, and Turnock, A. C. (1974) Geophys. Res. Lett. 1, 134.CrossRefGoogle Scholar
McCallister, R. H., and Nord, G. L. Jr., (1981) Am. Mineral. In press.Google Scholar
McLaren, A. C., and Etheridge, M. A. (1976) Contrib. Mineral. Petrol. 57, 163.CrossRefGoogle Scholar
Michot, J., and Michot, P. (1969) N.Y. State Museum and Sci. Service, Mere. 18, 399.Google Scholar
Nakajima, Y., and Hafner, S. S. (1980) Contrib. Mineral. Petrol. 72, 101.CrossRefGoogle Scholar
Nobugai, K., and Morimoto, N. (1979) Phys. Chem. Minerals, 4, 361.CrossRefGoogle Scholar
Nobugai, K., Tokonami, M., and Morimoto, N. (1978) Contrib. Mineral. Petrol. 67, 111.CrossRefGoogle Scholar
Nord, G. L. Jr., and McGee, J. J. (1979) Proc. Lunar. Planet. Sci. Conf. 10th, 817.Google Scholar
Prewitt, C. T., Brown, G. E., and Papike, J. J. (1971) Proc. Lunar Planet. Sci. Conf. 2nd 1, 59.Google Scholar
Rietmeijer, F. J. M. (1979) Pyroxenes from iron-rich igneous rocks in Rogaland S. W. Norway. Geol. Ultraiectina 21, 341 pp.Google Scholar
Rietmeijer, F. J. M. and Champness, P. E. (1980a) Proc. 7th Eur. Cong. Electron Microscopy, The Hague, 1, 452.Google Scholar
Rietmeijer, F. J. M. (1980b) Inst. Phys. Conf. Set. No. 52, 105.Google Scholar
Robinson, P., Jaffe, H. W., Ross, M., and Klein, C. Jr., (1971) Am. Mineral. 56, 909.Google Scholar
Robinson, P., Ross, M., Nord, G. L. Jr.,, Smyth, J. R., and Jaffe, H. W. (1977) Ibid. 62, 857.Google Scholar
Roeder, P., Campbell, I. H., and Jamieson, H. (1980) Contrib. Mineral. Petrol. 23, 205.CrossRefGoogle Scholar
Ross, M., and Huebner, J. S. (1975) Extended abstracts, Int. Conf. Geothermometry Geobarometry, Pennsylvania State Univ.Google Scholar
Ross, M., Robinson, P., and Jaffe, H. W. (1972) Geol. Soc. Am. Abstr. with Programs, 4, 644.Google Scholar
Ross, M., Huebner, J. S., and Dowty, E. (1973) Am. Mineral. 58, 619.Google Scholar
Sack, R. O. (1980) Contrib. Mineral. Petrol. 71, 257.CrossRefGoogle Scholar
Smith, D. (1971) Am. J. Sci. 271, 370.CrossRefGoogle Scholar
Smith, D. (1972) Am. Mineral. 57, 1413.Google Scholar
Smith, D. (1974) J. Petrol. 15, 58.CrossRefGoogle Scholar
Smyth, J. R. (1974) Am. Mineral. 59, 1069.Google Scholar
Smyth, J. R. and Burnham, C. W. (1972) Earth Planet. Sci. Lett. 14, 183.CrossRefGoogle Scholar
Turnock, A. C., Lindsley, D. H., and Grover, J. E. (1973) Am. Mineral. 58, 50.Google Scholar
Verschure, R. H., Andriessen, P. A. M., Beolrijk, N. A. I. M., Hebeda, E. H., Maijer, C., Priem, H. N. A., and Verdurmen, E. A. Th. (1980) Contrib. Mineral. Petrol. 74, 245.CrossRefGoogle Scholar
Wells, P. R. A. (1977) Ibid. 62, 129.Google Scholar
Wood, B. J., and Banno, S. (1973) Contrib. Mineral. Petrol. 42, 109.CrossRefGoogle Scholar