Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T05:14:18.877Z Has data issue: false hasContentIssue false

Experimental study of clay mineral, greenschist, and low-pressure amphibole facies in the system Na2O-Al2O3-MgO-SiO2-H2O

Published online by Cambridge University Press:  05 July 2018

Claude Triboulet*
Affiliation:
Laboratoire de Pétrographie, Université Pierre et Marie Curie, Paris

Summary

Compositions concerning sodic amphiboles (glaucophane) in the system Na2O-Al2O3-MgO-SiO2-H2O have been studied at PH2O ≤ 3 kb, 380 °C < T < 700 °C. The study attempts to establish the mineral parageneses under these physical conditions as they define the clay mineral (saponite-hectorite smectite) and greenschist (chlorite-albite) facies. The occurence of sodic amphiboles is defined by compositional parameters. Glaucophane does not appear in the present investigation.

The method of ‘reaction reversal’, i.e. using precrystallized mineral assemblages to form new ones, has been used to establish the three reactions: albite + chlorite → paragonite + saponite, paragonite + chlorite → saponite + cordierite, and saponite + paragonite → albite + cordierite. In general, the clay mineral → greenschist transformation is favoured by an increase in pressure in the system studied. The amphibole present is a sodic richterite with the type substitution

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Equipe de Recherche associée au C.N.R.S. : 'Pétrogénèse des roches éruptives et métamorphiques'.

References

Ames, (L. L.) and Sand, (L. B.), 1958. Amer. Min. 43, 641.Google Scholar
Ball, (D. F.), 1964. Clay Min. Bull. 5, 32, 434.CrossRefGoogle Scholar
Barshad, (I.), 1949. Amer. Min. 34, 675.Google Scholar
Barshad, (I.), 1950. Ibid. 35, 225.Google Scholar
Barshad, (I.), 1952. Proc. Soil Sci. Soc. Amer. 16, 176.CrossRefGoogle Scholar
Brown, (G.), 1953. Journ. Soil Sci. 4, 229.CrossRefGoogle Scholar
Carman, (J. H.), 1974a. LOS Trans., Amer. Geophys. Union, 55, 4, 481.Google Scholar
Carman, (J. H.), 1974b. Amer. Min. 59, 261.Google Scholar
Chatterjee, (N. D.), 1970. Contr. Min. Petrol. 27, 244.CrossRefGoogle Scholar
Chatterjee, (N. D.), 1973. Ibid. 42, 259.CrossRefGoogle Scholar
Chatterjee, (N. D.), 1974. Ibid. 43, 25.CrossRefGoogle Scholar
Ernst, (W. G.), 1961. Amer. Journ. Sci. 259, 735.CrossRefGoogle Scholar
Fawcett, (J. J.) and Yoder, (H. S.), 1966. Amer. Min. 51, 353.Google Scholar
Grim, (R. E.), 1968. Clay Mineralogy, 2nd edn, McGraw-Hill, New York.Google Scholar
Hathaway, (J. C.), 1955. Clays attd Clay Min. 74. Publ. 395, Nat. Acad. Sci., Nat. Res. Counc., Washington. Google Scholar
Iiyama, (J. T.), 1963. C.R. Aead. Sci. Paris, 256, 966.Google Scholar
Iiyama, (J. T.), and Roy, (R.), 1963a. Clay Min. Bull. 5, 29, 161.CrossRefGoogle Scholar
Iiyama, (J. T.), and Roy, (R.), 1963b. Clays and Clay Min. 10, 1.Google Scholar
Kiéyast, (J. R.) and Velde, (B.), 1968. C.R. Acad. Sci. Paris, 267, 1909.Google Scholar
Koizumi, (M.) and Roy, (R.), 1959. Amer. Mitt. 44, 788.Google Scholar
Luth, (W. C.) and Ingamells, (C. O.), 1965. Ibid. 50, 255.Google Scholar
Maresch, (W. V.), 1973. Earth and Plan. Sci. Letters, 20, 385.CrossRefGoogle Scholar
Phillips, (R.) and Rowbotham, (G.), 1968. Pap. Proc. 5th Gen. Meet. I.M.A., 249. London (Min. Soc.).Google Scholar
Robert, (M.) and Barshad, (I.), 1972. C.R. Acad. Sci. Paris, 275, 1463.Google Scholar
Roy, (D. M.) and Roy, (R.), 1955. Amer. Min. 40, 147.Google Scholar
Saha, (P.), 1959. Ibid. 44, 300.Google Scholar
Sand, (L. B.), Roy, (R.), and Osborn, (E. F.), 1957. Econ. Geol. 52, 169.CrossRefGoogle Scholar
Schreyer, (W.) and Yoder, (H. S.), 1964. Neues Jahrb. Min., Abh. 101, 271.Google Scholar
Seifert, (F.), 1970. Journ. Petrol. 11, 1, 73.CrossRefGoogle Scholar
Smith, (J. V.), 1956. Min. Mag. 31, 47.Google Scholar
Stephen, (I.) and Macewan, (D. M. C.), 1949. Clay Mitt. Bull. 1, 157.CrossRefGoogle Scholar
Sudo, (T.) and Kodama, (H.), 1957. Z. Krist. 109, 379.CrossRefGoogle Scholar
Triboulet, (C.), 1975. Bull. Soc.fr. Min. Crist. 98, 136.Google Scholar
Triboulet, (C.), 1976. Ibid. 99, 50.CrossRefGoogle Scholar
Van Moort, (J. C.), De Kimpe, (C. R.), Herbillon, (A. J.), and Fripiat, (J. J.), 1966. Ibid. 89, 89.CrossRefGoogle Scholar
Velde, (B.), 1973. Min. Mag. 39, 297.CrossRefGoogle Scholar
Veniale, (F.), 1962. Rend. Soc. Min. Italia, Pavia, 18, 259.Google Scholar
Veniale, (F.), and Van Der Marel, (H. W.), 1963. Beitr. Min. Petrol. 9, 198.Google Scholar
Walker, (G. F.), 1950. Min. Mag. 29, 72.Google Scholar
Walker, (G. F.), 1958. Clay Min. Bull. 3, 302.CrossRefGoogle Scholar
Wilson, (M. J.), Bain, (D. C.), and Mitchell, (W. A.), 1968. Clay Mitt. 7, 343.CrossRefGoogle Scholar
Wilson, (M. J.), Bain, (D. C.), and Mitchell, (W. A.), 1970. Contr. Min. Petrol. 26, 285.CrossRefGoogle Scholar
Witte, (P.), Langer, (K.), Seifert, (F.), and Schreyer, (W.), 1969. Naturwiss. 8, 414.CrossRefGoogle Scholar