Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T14:28:04.215Z Has data issue: false hasContentIssue false

Eringaite, Ca3Sc2(SiO4)3, a new mineral of the garnet group

Published online by Cambridge University Press:  05 July 2018

I. O. Galuskina*
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
E. V. Galuskin
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
B. Lazic
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
K. Prusik
Affiliation:
Institute of Materials Science, University of Silesia, Bankowa 12, 40-007 Katowice, Poland
R. Wrzalik
Affiliation:
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
*

Abstract

Eringaite, Ca3Sc2(SiO4)3, a new mineral of the garnet group, is an accessory mineral in metasomatic rodingite-like rocks from the Wiluy River, Sakha-Yakutia Republic, Russia. Eringaite forms regular growth zones and irregular spots in complex garnet crystals containing a kimzeyite core. An electron back-scatter diffraction pattern with an excellent match to a garnet model with a = 12.19 Å was obtained for a grain with the largest Sc2O3 content having the crystal chemical formula (Ca2.98Y0.01Mg0.01)Σ3(Sc0.82Ti4+0.44Fe3+0.30Zr0.21Mg0.10Al0.09Cr3+0.08Fe2+0.05V3+0.01)Σ2.01(Si2.48Al0.30Fe3+0.22)Σ3O12. Eringaite is light brown to yellow with a creamy white streak. The crystals are transparent with a vitreous lustre. The calculated density of eringaite is 3.654 g cm–3. The following main modes of the Raman spectrum are characteristic of eringaite: 335, 511, 735, 880 and 937 cm–1. The strongest lines of the calculated powder diffraction data are as follows [(hkl) dhkl (I)] (400) 3.064 (69), (420) 2.740 (100), (422) 2.502 (68), (640) 1.670 (30), (642) 1.638 (82), (840) 1.370 (20), (842) 1.137 (19), (10.4.2) 1.119 (29).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chakhmouradian, A.R. and McCammon, C.A. (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Physics and Chemistry of Minerals, 32, 277289.CrossRefGoogle Scholar
Chen, Y., Gong, M. and Cheah, K.W. (2009) Effects of fluxes on the synthesis of Ca3Sc2Si3O12:Ce 3+ green phosphors for white light-emitting diodes. Materials Science and Engineering, B, doi:10.1016/j.mseb.2009.09.024.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Ball, N.A., Černý, P. and Kristiansen, R. (2006) Oftedalite, (Sc,Ca,Mn2+)2K(Be,Al)3Si12O30, a new member of the milarite group from the Heftetjern pegmatite, Tordal, Norway: Description and crystal structure. The Canadian Mineralogist, 44, 943949.CrossRefGoogle Scholar
Day, A. and Trimby, P. (2004) Channel 5 Manual HKL Technology Inc., Hobro, Denmark.Google Scholar
Demartin, F., Gramaccioli, C.M. and Pilati, T. (2000) Structure refinement of bazzite from pegmatitic and miarolitic occurrences. The Canadian Mineralogist, 38, 14191424.CrossRefGoogle Scholar
Galuskin, E.V. (2005) Minerals of the vesuvianite group from achtarandite rocks (Wiluy River, Yakutia). Series ofwiluite-vesuvianite-Si-deficient vesuvianite hydrovesuvianite. Genesis of achtarandite rodingitoids (in Polish), University of Silesia, Katowice, Poland.Google Scholar
Galuskina, I.O., Galuskin, E.V. and Sitarz, M. (1998) Atoll hydrogamets mechanism of the formation of achtarandite pseudomorphs. Neues Jahrbuch für Mineralogie Monatshefie, 1998(2), 4966.Google Scholar
Galuskina, I.O., Galuskin, E.V., Dzierżanowski, P., Armbruster, T. and Kozanecki, M. (2005) A natural scandian garnet. American Mineralogist, 90, 16881692.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E., Wrzalik, R. and Gurbanov, A.G. (2010 a) Bitikleite-(SnAl) and bitikleite-(ZrFe) – new garnets from xenoliths of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist (in press).CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Armbruster, T., Lazic, B., Kusz, J., Dzierżanowski, P., Gazeev, V.M., Pertsev, N.N., Prusik, K., Zadov, A.E., Winiarski, A., Wrzalik, R. and Gurbanov, A.G. (2010 b) Elbrusite-(Zr) – a new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia. American Mineralogist (in press).CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Dzierżanowski, P., Gazeev, V.M., Prusik, K., Pertsev, N.N., Winiarski, A., Zadov, A.E. and Wrzalik, R. (2010 c) Toturite Ca3Sn2Fe2SiOi2 – a new mineral species of the garnet group. American Mineralogist (in press).CrossRefGoogle Scholar
Gramaccioli, C.M., Campostrini, I. and Orlandi, P. (2004) Scandium minerals in the miaroles of granite at Baveno, Italy. European Journal of Mineralogy; 16, 951956.CrossRefGoogle Scholar
Groat, L.A., Hawthorne, F.C., Ercit, T.S. and Grice, J.D. (1998) Wiluite Ca19(Al,Mg,Fe,Ti)13(B,Al,)5Si18068(O,OH)10, a new mineral species isostructural with vesuvianite, from the Sakha Republic, Russian Federation. The Canadian Mineralogist, 36, 13011304.Google Scholar
Hatert, F. and Burke, E. (2008) The MA-CNMNC dominant-constituent rule revised and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Huggins, F.E., Virgo, D. and Huckenholz, H.G. (1977) Titanium-containing silicate garnets. II. The crystal chemistry of melanites and schorlomite. American Mineralogist, 62, 646665.Google Scholar
Ito, J. and Frondel, C. (1968) Synthesis of the scandium analogues of aegirine, spodumene, andradite and melanotekite. American Minerologist, 53, 12761280.Google Scholar
Ivanovskikh, K.V., Meijerink, A., Piccinelli, F., Speghini, A., Zinin, E.I., Ronda, C. and Bettinelli, M. (2010) Optical spectroscopy of Ca3Sc2Si3O12, Ca3Y2Si3O12 and Ca3Lu2Si3O12 doped with Pr3+ . Journal of Luminescence, 130 (5), 893–901.CrossRefGoogle Scholar
Kolesov, B.A. and Geiger, C.A. (1998) Raman spectra of silicate garnets. Physics and Chemistry of Minerals, 25, 142151.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Lyakhovich, V.V. (1954) New mineralogical data from the Wiluy achtarandite deposit. Trudy Vostochno-Sibirskogo filiala Akademii Nauk SSSR, Seria Geologicheskaya, 1, 85116 (in Russian).Google Scholar
Locock, A.J. (2008) An Exel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers Geosdence, 34, 17691780.CrossRefGoogle Scholar
Locock, A., Luth, R.W., Cavell, R.G., Smith, D.G.W. and Duke, M.J.M. (1995) Spectroscopy of the cation distribution in the schorlomite species of garnet. American Mineralogist, 80, 2738.CrossRefGoogle Scholar
Ma, C. and Rossman, G.R. (2009) Davisite, CaScAlSiO6, a new pyroxene from the Allende meteorite. American Mineralogist, 94, 845848.CrossRefGoogle Scholar
Mellini, M., Merlino, S., Orlandi, P. and Rinaldi, R. (1982) Cascandite and jervisite, two new scandium silicates from Baveno, Italy. American Mineralogist, 67, 599603.Google Scholar
Mill', B.V. (1964) Hydrothermal synthesis of garnets containing V3+, In3+, and Sc3+ . Doklady Akademii Nauk SSSR, 156 (4), 814816 (in Russian).Google Scholar
Mill', B.V. (1966) Hydrothermal synthesis of silicates and germanates with garnet-type structure. Zhurnal Neorganicheskoi Khimii, XI, 7, 15331538 (in Russian).Google Scholar
Mill', B.V., Belokoneva, E.L., Simonov, M.A. and Belov, N.V. (1977) Refined crystal structures of the scandium garnets Ca3Sc2Si3O12, Ca3Sc2Ge3O12 and Cd3Sc2Ge3O12 . Zhurnal Strukturnoi Khimii, 18, 399402 (in Russian).Google Scholar
Offman, P.F. and Novikova, A.S. (1955) Volcanic pipe Eringa. Izvestiya Akademii Nauk SSSR, Seria Geologicheskaya, 4, 121139 (in Russian).Google Scholar
Oleynikov, B.V. (1979) Geochemistry and Ore Genesis of Platform Basites. Nauka, Novosibirsk (in Russian).Google Scholar
Orlandi, P., Pasero, M. and Vezzalini, G. (1998) Scandiobabingtonite, a new mineral from the Baveno pegmatite, Piedmont, Italy. American Mineralogist, 83, 13301334.CrossRefGoogle Scholar
Peterson, R.C., Locock, A.J.A. and Luth, R.W. (1995) Positional disorder of oxygen in garnet: The crystal-structure refinement of schorlomite. The Canadian Mineralogist, 33, 627631.Google Scholar
Pezzotta, F., Diella, V. and Guastoni, A. (2005) Scandium silicates from the Baveno and Cuasso al Monte NYF-granites, southern Alps (Italy): Mineralogy and genetic inferences. American Mineralogist, 90, 14421452.CrossRefGoogle Scholar
Piccinelli, F., Speghini, A., Mariotto, G. and Bettinelli, M. (2009) Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12 . Journal of Rare Earths, 72, 4, 555559.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (Z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis – 1985. San Francisco Press, San Francisco, California, USA.Google Scholar
Prendel, R. (1887) About wiluite. Proceeding of Novorossiysk society of nature investigator, XII, 2, 148 (in Russian).Google Scholar
Quartieri, S., Oberti, R., Boiocchi, M., Dalconi, M.C., Boscherini, F., Safonova, O. and Woodland, A.B. (2006) Site preference and local geometry of Sc in garnets: Part II. The crystal-chemistry of octahedral Sc in the andradite-Ca3Sc2Si3O12 join. American Mineralogist, 91, 12401248.CrossRefGoogle Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristiansenite, a new calcium-scandium-tin sorosilicate from granite pegmatite in Tordal, Telemark, Norway. Mineralogy and Petrology, 75, 8999.CrossRefGoogle Scholar
Semenov, I.E., Khomyakov, A.R. and Bukova, A.V. (1965) Magbasite – new mineral. Doklady Akademii Nauk SSSR, 163 (3), 718719 (in Russian).Google Scholar
Schingaro, E., Scordari, F., Capitano, F., Parodi, G., Smith, D.C. and Motana, A. (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. European Journal of Mineralogy, 13, 749759.CrossRefGoogle Scholar
Werner, G.A. (1811) Handbuch der Mineralogie. Hofmann, 1, pp. 479.Google Scholar
Woodland, A.B. and Angel, R.J. (1996) Synthesis and properties of Ca3Fe2Si3O12–Ca3Sc2Si3O12 garnet solid solutions. Terra Abstracts, 8, 68.Google Scholar