Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T03:34:21.363Z Has data issue: false hasContentIssue false

The dumortierite supergroup. II. Three new minerals from the Szklary pegmatite, SW Poland: Nioboholtite, (Nb0.60.4)Al6BSi3O18, titanoholtite, (Ti0.750.25)Al6BSi3O18, and szklaryite, □Al6BAs3+3O15

Published online by Cambridge University Press:  05 July 2018

A. Pieczka*
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, Kraków, 30-059, Poland
R. J. Evans
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, V6T IZ4, Canada
E. S. Grew
Affiliation:
School of Earth and Climate Sciences, University of Maine, Bryand Global Science Center, Orono, Maine, 04469- 5790, USA
L. A. Groat
Affiliation:
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, V6T IZ4, Canada
C. Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, California, 91125-2500, USA
G. R. Rossman
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, California, 91125-2500, USA
*

Abstract

Three new minerals in the dumortierite supergroup were discovered in the Szklary pegmatite, Lower Silesia, Poland. Nioboholtite, endmember (Nb0.60.4)Al6B3Si3O18, and titanoholtite, endmember (Ti0.750.25)Al6B3Si3O18, are new members of the holtite group, whereas szklaryite, endmember ☐Al6BAs3+3O15, is the first representative of a potential new group. Nioboholtite occurs mostly as overgrowths not exceeding 10 μm in thickness on cores of holtite. Titanoholtite forms patches up to 10 μm across in the holtite cores and streaks up to 5 μm wide along boundaries between holtite cores and the nioboholtite rims. Szklaryite is found as a patch ∼2 μm in size in As- and Sb- bearing dumortierite enclosed in quartz. Titanoholtite crystallized almost simultaneously with holtite and other Ta-dominant minerals such as tantalite-(Mn) and stibiotantalite and before nioboholtite, which crystallized simultaneously with stibiocolumbite during decreasing Ta activity in the pegmatite melt. Szklaryite crystallized after nioboholtite during the final stage of the Szklary pegmatite formation. Optical properties could be obtained only from nioboholtite, which is creamy-white to brownish yellow or grey-yellow in hand specimen, translucent, with a white streak, biaxial (–), nα = 1.740 – 1.747, nβ ∼ 1.76, nγ ∼ 1.76, and Δ < 0.020. Electron microprobe analyses of nioboholtite, titanoholtite and szklaryite give, respectively, in wt.%: P2O5 0.26, 0.01, 0.68; Nb2O5 5.21, 0.67, 0.17; Ta2O5 0.66, 1.18, 0.00; SiO2 18.68, 21.92, 12.78; TiO2 0.11, 4.00, 0.30; B2O3 4.91, 4.64, 5.44; Al2O3 49.74, 50.02, 50.74; As2O3 5.92, 2.26, 16.02; Sb2O3 10.81, 11.48, 10.31; FeO 0.51, 0.13, 0.19; H2O (calc.) 0.05, –, –, Sum 96.86, 96.34, 97.07, corresponding on the basis of O = 18–As–Sb to {(Nb0.26Ta0.020.18)(Al0.27Fe0.05Ti0.01)☐0.211.00Al6B0.92{Si2.03P0.02(Sb0.48As0.39Al0.073.00(O17.09OH0.040.8718.00, {(Ti0.32 Nb0.03 Ta0.030.10)(Al0.35 Ti0.01 Fe0.01)☐0.151.00 Al6 B0.86 {Si2 . 3 6 (Sb0.5 1 As0.14 )}Σ3.01(O17.350.6518.00 and {☐0.53 (Al0.41 Ti0.02 Fe0.02 )(Nb0.010.01 )}Σ1.00Al6 B1.01 {(As1.07 Sb0.47 Al0.03 ) Si1.37 P0.063.00(O16.461.5418.00. Electron backscattered diffraction indicates that the three minerals are presumably isostructural with dumortierite, that is, orthorhombic symmetry, space group Pnma (no. 62), and unit-cell parameters close to a = 4.7001, b = 11.828, c = 20.243 Å, with V = 1125.36 Å3 and Z = 4; micro-Raman spectroscopy provided further confirmation of the structural relationship for nioboholtite and titanoholtite. The calculated density is 3.72 g/cm3 for nioboholtite, 3.66 g/cm3 for titanoholtite and 3.71 g/cm3 for szklaryite. The strongest lines in X-ray powder diffraction patterns calculated from the cell parameters of dumortierite of Moore and Araki (1978) and the empirical formulae of nioboholtite, titanoholtite and szklaryite are [d, Å, I (hkl)]: 10.2125, 67, 46, 19 (011); 5.9140, 40, 47, 57 (020); 5.8610, 66, 78, 100 (013); 3.4582, 63, 63, 60 (122); 3.4439, 36, 36, 34 (104); 3.2305, 100, 100, 95 (123); 3.0675, 53, 53, 50 (105); 2.9305, 65, 59, 51 (026); 2.8945, 64, 65, 59 (132), respectively. The three minerals have been approved by the IMA CNMNC (IMA 2012-068, 069, 070) and were named for their relationship to holtite and occurrence in the Szklary pegmatite, respectively.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, V.D., Griffen, D.T. and Martin, J.T. (1986) Crystal chemistry of some Fe- and Ti-poor dumortierites. American Mineralogist, 71, 786794 Google Scholar
Brady, J.B. and Cherniak, D.J. (2010) Diffusion in minerals: An overview of published experimental diffusion data. Pp. 899920 in: Diffusion in Minerals and Melts (Y. Zhang and D.J. Cherniak, editors). Reviews in Mineralogy and Geochemistry, 72. Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Chopin, C., Ferraris, G., Ivaldi, G., Schertl, H.-P., Schreyer, W., Compagnoni, R., Davidson, C. and Davis, A.M. (1995) Magnesiodumortierite, a new mineral from very-high-pressure rocks (western Alps). II. Crystal chemistry and petrological significance. European Journal of Mineralogy, 7, 525535 CrossRefGoogle Scholar
Fuchs, Y., Ertl, A., Hughes, J.M., Prowatke, S., Brandstaetter, F. and Schuster, R. (2005) Dumortierite from the Gföhl unit: Lower Austria; chemistry, structure, and infra-red spectroscopy. European Journal of Mineralogy, 17, 173183 CrossRefGoogle Scholar
Galliski, M.A., Márques-Zavalía, M.F., Lira, R., Cempírek, J. and Škoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. The Canadian Mineralogist, 50, 873894 CrossRefGoogle Scholar
Grew, E.S. (2002) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic environments. Pp. 387502 in: Boron: Mineralogy, Petrology, and Geochemistry (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Washington, D.C.Google Scholar
Grew, E.S., Graetsch, H., Pö ter, B., Yates, M.G., Buick, I., Bernhardt, H.-J., Schreyer, W., Werding, G., Carson, C.J. and Clarke, G.L. (2008) Boralsilite, Al16B6Si2O37, and “boron-mullite”: compositional variations and associated phases in experiment and nature. American Mineralogist, 93, 283299 CrossRefGoogle Scholar
Groat, L.A., Grew, E. S., Evans, R.J., Pieczka, A. and Ercit, T.S. (2009) The crystal chemistry of holtite. Mineralogical Magazine, 73, 10331050 CrossRefGoogle Scholar
Hoskins, B.F., Mumme, W.G. and Pryce, M.W. (1989) Holtite, (Si2.25Sb0.75)B[(Al6(Al0.43Ta0.270.30) O15(O,OH)2.25]: crystal structure and crystal chemistry. Mineralogical Magazine, 53, 457463 CrossRefGoogle Scholar
Huijsmans, J.P.P., Barton, M. and van Bergen, M.J. (1982) A pegmatite containing Fe-rich grandidierite, Ti-rich dumortierite and tourmaline from the Precambrian, high-grade metamorphic complex of Rogaland,, S.W. Norway. Neues Jahrbuch für Mineralogie Abhandlungen, 143, 249261 Google Scholar
Ma, C. and Rossman, G.R. (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154157 CrossRefGoogle Scholar
Ma, C. and Rossman, G.R. (2009) Tistarite, Ti2O3, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841844 CrossRefGoogle Scholar
Ma, C., Goreva, J.S. and Rossman, G.R. (2002) Fibrous nanoinclusions in massive rose quartz: HRTEM and AEM investigations. American Mineralogist, 87, 269276 CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1978) Dumortierite, Si3B[Al6.750.25O17.25(OH)0.75]: a detailed structure analysis. Neues Jahrbuch fü r Mineralogie Abhandlungen, 132, 231241 Google Scholar
Pieczka, A. (2000) A rare mineral-bearing pegmatite from the Szklary serpentinite massif, the Fore-Sudetic Block,, SW Poland. Geologia Sudetica, 33, 2331 Google Scholar
Pieczka, A. (2007) Blue dravite from the Szklary pegmatite (Lower Silesia, Poland). Mineralogia Polonica, 38/2, 209218 CrossRefGoogle Scholar
Pieczka, A. (2010) Primary Nb-Ta minerals in the Szklary pegmatite, Poland: new insights into controls of crystal chemistry and crystallization sequences. American Mineralogist, 95, 14781492 CrossRefGoogle Scholar
Pieczka, A. and Kraczka, J. (1996) X-ray and Mössbauer study of black tourmalines (schorls) from Szklary (Lower Silesia, Poland). Mineralogia Polonica, 27/2, 3340 Google Scholar
Pieczka, A. and Marszałek, M. (1996) Holtite – the first occurrence in Poland. Mineralogia Polonica, 27, 38 Google Scholar
Pieczka, A., Grew, E. S., Groat, L.A. and Evans, R.J. (2011) Holtite and dumortierite from the Szklary Pegmatite, Lower Silesia, Poland. Mineralogical Magazine, 75, 303315 CrossRefGoogle Scholar
Pieczka, A., Evans, R.J., Grew, E.S., Groat, L.A., Ma, C. and Rossman, G.R. (2013) The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineralogical Magazine, 77, 28252839 CrossRefGoogle Scholar
Pouchou, J.L. and Pichor, F. (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Pryce, M.W. (1971) Holtite: a new mineral allied to dumortierite. Mineralogical Magazine, 38, 2125 CrossRefGoogle Scholar
Sorbier, L., Rosenberg, E. and Merlet, C. (2004) Microanalysis of porous materials. Microscopy and Microanalysis, 10, 745752 CrossRefGoogle ScholarPubMed
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland; evidence for a single-cycle Variscan Orogeny. Journal of the Geological Society, 157, 265268 CrossRefGoogle Scholar
van Breemen, O., Bowes, D.R., Aftalion, M. and Z˙ elaz´niewicz, A. (1988) Devonian tectonothermal activity in the Sowie Go´ ry gneissic block, Sudetes, southwestern Poland: evidence from Rb-Sr and U-Pb isotopic studies. Journal of the Polish Geological Society, 58, 310 Google Scholar
Voloshin, A.V., Gordienko, V.V., Gel’man, Ye.M., Zorina, M.L., Yelina, N.A., Kul’chitskaya, Ye.A., Men’shikov, Yu.P., Polezhayeva, L.I., Ryzhova, R.I., Sokolov, P.B. and Utochkina, G.I. (1977) Holtite (first find in the USSR) and its relationship with other tantalum minerals in rare-metal pegmatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 106(3), 337347 (in Russian).Google Scholar
Voloshin, A.V., Pakhomovskiy, Ya.A. and Zalkind, O.A. (1987) An investigation of the chemical composition and IR-spectroscopy of holtite. Pp. 1434 in: Mineral’nyye Assotsiatsii i Mineraly Magmaticheskikh Kompleksov Kol’skogo Poluostrova. Kol’skiy Filial Akademii Nauk SSSR, Apatity (in Russian).Google Scholar