Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T21:15:32.134Z Has data issue: false hasContentIssue false

Distinctive properties of rock-forming blue quartz: inferences from a multi-analytical study of submicron mineral inclusions

Published online by Cambridge University Press:  05 July 2018

W. Seifert*
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
D. Rhede
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
R. Thomas
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
H.-J. Förster
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
F. Lucassen
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
P. Dulski
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
R. Wirth
Affiliation:
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, D-14473 Potsdam, Germany
*

Abstract

The study discusses the mineralogical, geochemical and thermometric properties of rock-forming blue quartz from eight worldwide occurrences. Compared to non-blue quartz, blue quartz contains significant amounts of submicron-sized (1 μm—100 nm) and nanometre-sized (<100 nm) inclusions. Mica, ilmenite and rutile constitute the most abundant submicron-sized inclusions, and are formed probably by syngenetic precipitation in the boundary layer between quartz and melt (entrapment model). Nanometre-sized rutile possibly originated by epigenetic exsolution of Ti from the quartz structure (exsolution model). Rayleigh scattering of light by nano-particulate inclusions best explains the origin of the blue colour. Blue quartz is generally Ti-rich (∼100—300 ppm) and formed at high temperatures (∼700°C—900°C). The large number, and high spatial density, of tiny xenocrystic inclusions of Ti-bearing minerals make calculations of crystallization temperatures using the Ti-in-quartz thermometer unreliable. The geological significance of blue quartz remains obscure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, D.S. and Burmester, R.F. (1970) Leaching of quartz from Precambrian hypabyssal rhyolite por-phyry, Llano County, Texas. Contributions to Mineralogy and Petrology, 28, 1—8.CrossRefGoogle Scholar
Bartovics, S. and Beane, R. (2007) Analysis of blue color in quartz grains from Cushing Formation, Peaks Island, Maine. The Maine Geologist, 36, 4.Google Scholar
Cherniak, D.J., Watson, E.B. and Wark, D.A. (2007) Ti diffusion in quartz. Chemical Geology, 236, 65—74.CrossRefGoogle Scholar
Coira, B., Kay, S.M., Pérez, B., Woll, B., Planning, M. and Flores, P. (1999) Magmatic sources and tectonic setting of Gondwana margin Ordovician magmas, northern Puna of Argentina and Chile. Pp. 145—170 in: Laurentia—Gondwana Connections before Pangea (Ramos, V.A. and Keppie, J.D., editors). Geological Society of America, Special Paper, 336. Geological Society of America, Boulder, Colorado, USA, 276 pp.Google Scholar
Coira, B., Kirschbaum, A., Hongn, F., Pérez, B. and Menegatti, N. (2009) Basic magmatism in north-eastern Puna, Argentina: chemical composition and tectonic setting in the Ordovician back-arc. Journal of South American Earth Sciences, 28, 374—382.CrossRefGoogle Scholar
Dörfler, H.-D. (2002) Grenzflächen und colloid-disperse Systeme. Springer, Berlin, 989 pp.CrossRefGoogle Scholar
Emerson, B.K. and Perry, J.H. (1907) The green schists and associated granites and porphyries of Rhode Island. U.S . Geological Survey Bulletin, 311, 4546.Google Scholar
Fernández, C., Becchio, R., Castro, A., Viramonte, J.M., Moreno-Ventas, I. and Corretgé, L.G. (2008) Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation. Gondwana Research, 14, 451—473.CrossRefGoogle Scholar
Frazier, A.S. and Gobel, V.W. (1982) Rutile as cause of blue color of quartz from llanite, Llano County, Texas. Geological Society of America, Abstracts with Programs, 14, 111.Google Scholar
Frondel, C. (1962) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Volume 3, 7th edition, Silica Minerals. John Wiley and Sons, New York, 334 pp.Google Scholar
Gehmlich, M., Linnemann, U., Tichomirowa, M., Lützner, H. and Bombach, K. (1997) Datierung und Korrelation neoproterozoisch-frühpaläozoischer Profile des Schwarzburger Antiklinoriums und der Elbezone auf der Basis der Geochronologie von Einzelzirkonen. Zeitschrift für geologische Wissenschaften, 25, 191201.Google Scholar
Gehmlich, M., Linnemann, U., Tichomirowa, M., Todt, W. and Bombach, K. (2000) U-Pb- und Pb-Pb-Zirkondatierungen an Orthogesteinen der Elbezone: Konsequenzen für variszische Deckenüberschieb-ungen im Saxothuringikum. Zeitschrift der deutschen geologischen Gesellschaft, 151, 203—230.Google Scholar
Götze, J. (2009) Chemistry, textures and physical properties of quartz — geological interpretation and technical application. Mineralogical Magazine, 73, 645671.CrossRefGoogle Scholar
Hammer, J., Eidam, J., Röber, B. and Ehling, B.-C. (1999) Prävariscischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs — Geochemie und Petrogenese. Zeitschrift für geologische Wissenschaften, 27, 401412.Google Scholar
Harms, U. (1989) Krustenentwicklung in Nordost-Afrika: geochemische und isotopengeochemische Untersuchungen von Granitoiden aus Südägypten und Nordsudan. Berliner Geowissenschaftliche Abhandlungen, A108, 1152.Google Scholar
Helper, M.A., Gose, W.A. and Roback, R.C. (1996) Virtual geomagnetic pole positions from 1.1 Ga intrusive rocks of the Llano uplift, central Texas. Geological Society of America, Abstracts with Programs, 28, 18.Google Scholar
Iddings, J.P. (1904) Quartz-feldspar-porphyry (grani-phyro liparose-alaskose) from Llano, Texas. Journal of Geology, 12, 225231.CrossRefGoogle Scholar
Jayaraman, N. (1939) The cause of colour of the blue quartzes of the charnockites of South India and the Champion Gneiss and other related rocks of Mysore. Proceedings of the Indian Academy of Science, 9, 265285.CrossRefGoogle Scholar
Kirschbaum, A., Hongn, F. and Menegatti, N. (2006) The Cobres Plutonic Complex, eastern Puna (NW Argentina): petrological and structural constraints for Lower Paleozoic magmatism. Journal of South American Earth Sciences, 21, 252—266.CrossRefGoogle Scholar
Lehmann, G. (1978) Farben von Mineralen und ihre Ursachen. Fortschritte der Mineralogie, 56, 172252.Google Scholar
Lehmann, G. and Bambauer, H.-U. (1973) Quarzkristalle und ihre Farben. Angewandte Chemie, 85, 281289.CrossRefGoogle Scholar
Lennox, P. and Zwingmann, H. (2007) Structural history of the Eastern Lachlan Orogen, New South Wales. P. 80 in: Abstracts of the Specialist Group in Tectonics and Structural Geology Field Conference, Alice Springs, 9—13 July. Geological Society of Australia, Sydney, Australia.Google Scholar
Linnemann, U. and Schauer, M. (1999) Die Entstehung der Elbezone vor dem Hintergrund der cadomischen und variszischen Geschichte des Saxothuringischen Terranes — Konsequenzen aus einer abgedeckten geologischen Karte. Zeitschrift für geologische Wissenschaften, 27, 529561.Google Scholar
Lucassen, F., Dulski, P., Abart, R., Franz, G., Rhede, D. and Romer, R.L. (2011) Redistribution of HFSE elements during rutile replacement by titanite. Contributions to Mineralogy and Petrology, 160, 279295.CrossRefGoogle Scholar
Meinhold, G. (2010) Rutile and its applications in the earth sciences. Earth-Science Reviews, 102, 1—28.CrossRefGoogle Scholar
Morand, V.J. (1988) Emplacement and deformation of the Wyangala Batholith, New South Wales. Australian Journal of Earth Sciences, 35, 339—353.CrossRefGoogle Scholar
Müller, A., Lennox, P. and Trzebski, R. (2002) Cathodoluminescence and micro-structural evidence for crystallisation and deformation processes of granites in the Eastern Lachlan Fold Belt (SE Australia). Contributions to Mineralogy and Petrology, 143, 510524.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Van den Kerkhof, A.M., Kronz, A. and Simon, K. (2003) Trace elements in quartz — a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy, 15, 747763.CrossRefGoogle Scholar
Müller, A., Seltmann, R., Kober, B., Eklund, O., Jeffries, T. and Kronz, A. (2008) Compositional zoning of rapakivi feldspars and coexisting quartz phenocrysts. The Canadian Mineralogist, 46, 1417—1442.CrossRefGoogle Scholar
Müller, A., Van den Kerkhof, A.M., Behr, H.-I, Kronz, A. and Koch-Müller, M. (2010) The evolution of late-Hercynian granites and rhyolites documented by quartz — a review. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 185204.CrossRefGoogle Scholar
Nassau, K. (1983) The Physics and Chemistry of Color. Wiley, New York, p. 233249.Google Scholar
Oberc-Dziedzic, T., Pin, C. and Kryza, R. (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences, 94, 354—368.CrossRefGoogle Scholar
Parker, R.B. (1962) Blue quartz from the Wind River Range, Wyoming. American Mineralogist, 47, 12011202.Google Scholar
Phillips, G.N. (1980) Water activity changes across an amphibolite-granulite facies transition, Broken Hill, Australia. Contributions to Mineralogy and Petrology, 75, 377386.CrossRefGoogle Scholar
Phillips, G.N. and Wall, V.J. (1981) Evaluations of prograde regional metamorphic conditions: their implications for the heat sources and water activity during metamorphism in the Willyma Complex, Broken Hill, Australia. Bulletin de Mineralogie, 104, 801810.CrossRefGoogle Scholar
Postelmann, A. (1937) Die Ursache der Blaufärbung gesteinsbildender Quarze. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 72, 401440.Google Scholar
Reinisch, R. (1902) Druckprodukte aus Lausitzer Biotitgranit und seinen Diabasgängen. Habilitationsschrift, Leipzig, Germany, 40 pp.Google Scholar
Robertson, R. (1884) Examination of blue quartz from Nelson Co., Va. Chemical News, 50, 207.Google Scholar
Schust, F. (2000) Das Dohnaer Massiv in der südöstlichen Elbezone. Geoprofil, 10, 39—54.Google Scholar
Seifert, W., Rhede, D., Förster, H.-J. and Thomas, R. (2009) Accessory minerals as fingerprints for the thermal history and geochronology of the Caledonian Rumburk granite. Neues Jahrbuch für Mineralogie, Abhandlungen, 186, 215—233.CrossRefGoogle Scholar
Seifert, W., Thomas, R., Rhede, D. and Förster, H.-J. (2010) Origin of coexisting wüstite, Mg—Fe and REE phosphate minerals in graphite-bearing fluor-apatite from the Rumburk granite. European Journal of Mineralogy, 22, 495507.CrossRefGoogle Scholar
Smed, P. and Ehlers, J. (2002) Steine aus dem Norden — Geschiebe als Zeugen der Eiszeit in Norddeutschland. Borntraeger, Berlin and Stuttgart, Germany, 193 pp.Google Scholar
Sparks, H.A. and Mavrogenes, J. A. (2005) Sulfide melt inclusions as evidence for the existence of a sulfide partial melt at Broken Hill, Australia. Economic Geology, 100, 773779.CrossRefGoogle Scholar
Thomas, J.B., Watson, E.B., Spear, F.S., Shemella, P.T., Nayak, S.K. and Lanzirotti, A. (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160, 743—759.CrossRefGoogle Scholar
Thomas, S.-M., Koch-Müller, M., Reichart, P., Rhede, D., Thomas, R., Wirth, R. and Matsuk, S. (2009) IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Physics and Chemistry of Minerals, 36, 489509.CrossRefGoogle Scholar
Viramonte, J.M., Becchio, R.A., Viramonte, J.G., Pimentel, M.M. and Martino, R.D. (2007) Ordovician igneous and metamorphic units in southeastern Puna: new U—Pb and Sm—Nd data and implications for the evolution of northwestern Argentina. Journal of South American Earth . Sciences, 24, 167183.Google Scholar
Vultee, J. (1955) Uber die orientierten Verwachsungen von Rutil in Quarz. Neues Jahrbuch für Mineralogie, . Abhandlungen, 87, 389415.Google Scholar
Vultee, J. (1956) Die Verwachsungsgesetze der orientierten Einlagerungen von Rutil in Quarz. Zeitschrifi für Kristallographie 107, 1 — 17.Google Scholar
Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743—754.CrossRefGoogle Scholar
Watson, E.B., Wark, D.A. and Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413433.CrossRefGoogle Scholar
Wiedemann, F. (1958) Geologische und petrografische Situation der Serizit-und Chloritgneise der Elbtalzone. Freiberger Forschungshefte, C55, 1—73.Google Scholar
Wirth, R. (2004) Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16, 863—876.CrossRefGoogle Scholar
Zolensky, M.E., Sylvester, P.J. and Paces, J.B. (1988) Origin and significance of blue coloration in quartz from Llano rhyolite (llanite), north-central Llano County, Texas. American Mineralogist, 73, 313332.Google Scholar
Supplementary material: Image

Seifert et al. supplementary material

Petrographic images of samples containing blue quartz

Download Seifert et al. supplementary material(Image)
Image 1.4 MB