Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T01:24:17.225Z Has data issue: false hasContentIssue false

Direct observations of mineral fluid reactions using atomic force microscopy: the specific example of calcite

Published online by Cambridge University Press:  05 July 2018

E. Ruiz -Agudo
Affiliation:
Department of Mineralogy and Petrology, University of Granada, Fuentenueva s/n 18071, Granada, Spain
C. V. Putnis*
Affiliation:
Institut für Mineralogie, University of Münster, Corrensstrasse 24, D-48149 Münster, Germany
*

Abstract

Atomic force microscopy (AFM) enables in situ observations of mineral fluid reactions to be made at a nanoscale. During the past 20 years, the direct observation of mineral surfaces at molecular resolution during dissolution and growth has made significant contributions toward improvements in our understanding of the dynamics of mineral fluid reactions at the atomic scale. Observations and kinetic measurements of dissolution and growth from AFM experiments give valuable evidence for crystal dissolution and growth mechanisms, either confirming existing models or revealing their limitations. Modifications to theories can be made in the light of experimental evidence generated by AFM. Significant changes in the kinetics and mechanisms of crystallization and dissolution processes occur when the chemical and physical parameters of solutions, including the presence of impurity molecules or background electrolytes, are altered. Calcite has received considerable attention in AFM studies due to its central role in geochemical and biomineralization processes. This review summarizes the extensive literature on the dissolution and growth of calcite that has been generated by AFM studies, including the influence of fluid characteristics such as supersaturation, solution stoichiometry, pH, temperature and the presence of impurities.

Type
Review
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arvidson, R.S., Ertan, I.E., Amonette, J.E., and Luttge, A. (2003) Variations in calcite dissolution rates: a fundamental problem? Geochimica et Cosmochimica Acta, 67, 16231624.CrossRefGoogle Scholar
Arvidson, R.S., Collier, M., Davis, K.J., Vinson, M.D., Amonette, J.E. and Luttge, A. (2006) Magnesium inhibition of calcite dissolution kinetics. Geochimica et Cosmochimica Acta, 70, 583594.CrossRefGoogle Scholar
Astilleros, J.M., Pina, C.M., Fernández-Díaz, L. and Putnis, A. (2000) The effect of barium on calcite (101¯ 4) surfaces during growth. Geochimica et Cosmochimica Acta, 64, 29652972.CrossRefGoogle Scholar
Astilleros, J.M., Pina, C.M., Fernández-Díaz, L. and Putnis, A. (2002) Molecular scale surface processes during the growth of calcite in the presence of manganese. Geochimica et Cosmochimica Acta, 66, 31773189.CrossRefGoogle Scholar
Astilleros, J.M., Pina, C.M., Fernández-Díaz, L. and Putnis, A. (2003) Nanoscale growth of solids crystallising from multicomponent aqueous solutions. Surface Science, 545, L767-L773.CrossRefGoogle Scholar
Astilleros, J.M., Fernández-Díaz, L. and Putnis, A. (2010) The role of magnesium in the growth of calcite: an AFM study. Chemical Geology, 271, 5258.CrossRefGoogle Scholar
Binnig, G., Quate, C.F., Ginzton, E.L. (1986) Atomic force microscope. Physical Review Letters, 56, 930933.CrossRefGoogle ScholarPubMed
Bisschop, J., Dysthe, D.K., Putnis, C.V. and Jamtveit, B. (2006) In situ AFM study of the dissolution and recrystallization behaviour of polished and stressed calcite surfaces. Geochimica et Cosmochimica Acta, 70, 17281738.CrossRefGoogle Scholar
Buhmann, D. and Dreybrodt, W. (1987) Calcite dissolution kinetics in the system H2O–CiO2– CaCO3 with participation of foreign ions. Chemical Geology, 64, 89102.CrossRefGoogle Scholar
Cabrera, N. and Vermilyea, D.A. (1958) The growth of crystals from solution. Pp. 393410. in: Growth and Perfection of Crystals (Doremus, R.H., Roberts, B.W., Turnbull, D., editors). Wiley, New York, 609 pp.Google Scholar
Chada, V.G.R., Hausner, D.B., Strongin, D.R., Rouff, A.A. and Reeder, R.J. (2005) Divalent Cd and Pb uptake on calcite {1014} cleavage faces: An XPS and AFM study. Journal of Colloid and Interface Science, 288, 350360.CrossRefGoogle ScholarPubMed
Chernov, A.A. (1984) Modern Crystallography III, Springer Series Solid State, Volume 36. Springer, Heidelberg, Germany. Google Scholar
Collins, K.D. (1997) Charge density-dependent strength of hydration and biological structure. Biophysical Journal, 72, 6576.CrossRefGoogle ScholarPubMed
Compton, R.G. and Unwin, P.R. (1990) The dissolution of calcite in aqueous solution at pH < 4: kinetics and mechanism. Philosophical Transactions of the Royal Society of London, A330, 145.Google Scholar
Compton, R.G., Pritchard, K.L., Unwin, P.R., Grigg, G., Silvester, P., Lees, M. and House, W.A. (1989) The effect of carboxylic acids on the dissolution of calcite in aqueous solution. Journal of Chemical Society, Faraday Transactions, 185, 43354366.CrossRefGoogle Scholar
Cooke, D., Gray, R., Sand, K., Stipp, S. and Elliott, J. (2010) Interaction of ethanol and water with the {104} surface of calcite. Langmuir, 26, 1452014529.CrossRefGoogle Scholar
Cubillas, P. and Higgins, S.R. (2009) Friction characteristics of Cd-rich carbonate films on calcite surfaces: implications for compositional differentiation at the nanometer scale. Geochemical Transactions, 10, http://dx.doi.org/10.1186/1467-4866-10-7.CrossRefGoogle Scholar
Davis, K.J., Dove, P.M. and de Yoreo, J.J. (2000) The role of Mg2+ as an impurity in calcite growth. Science, 290, 11341137.CrossRefGoogle ScholarPubMed
Davis, K.J., Dove, P.M., Wasylenki, L.E. and de Yoreo, J.J. (2004) Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite. American Mineralogist, 89, 714720.CrossRefGoogle Scholar
de Giudici, G. (2002) Surface control diffusions control during calcite dissolution: dependence of step-edge velocity upon solution pH. American Mineralogist, 87, 12791285.CrossRefGoogle Scholar
de Leeuw, N.H., Redfern, S.E., Cooke, D.J., Osguthorpe, D.J. and Parker, S.C. (2001) Modeling dynamic properties of mineral surfaces. Solid–Liquid Interface Theory, 8, 97112.CrossRefGoogle Scholar
de Yoreo, J.J. and Dove, P.M. (2004) Shaping crystals with biomolecules. Science, 306, 13011302.CrossRefGoogle ScholarPubMed
de Yoreo, J.J. and Vekilov, P.G. (2003) Principles of crystal nucleation and growth. Pp. 5793. in: Biomineralization (P.M. Dove, J.J. De Yoreo and Weiner, S., editors). Reviews in Mineralogy and Geochemistry, 54. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
de Yoreo, J.J., Zepeda-Ruiz, L.A., Friddle, R.W., Qiu, S.R., Wasylenki, L.E., Chernov, A.A., Gilmer, G.H. and Dove, P.M. (2009) Rethinking classical crystal growth models through molecular scale insights: consequences of kink-limited kinetics. Crystal Growth & Design, 9, 51355144.CrossRefGoogle Scholar
Dove, P.M. and Hochella, M.F., Jr (1993) Calcite precipitation mechanisms and inhibition by orthophosphate: in situ observations by scanning force microscopy. Geochimica et Cosmochimica Acta, 57, 705714.CrossRefGoogle Scholar
Dove, P.M. and Platt, F.M. (1996) Compatible real-time rates of mineral dissolution by atomic force microscopy (AFM). Chemical Geology, 127, 331338.CrossRefGoogle Scholar
Dove, P.M., de Yoreo, J.J., Davis, K.J. (2004) Inhibition of CaCO3 crystallization by small molecules: the magnesium example. Pp. 5582. in: From Solid-Fluid Interfaces to Nanostructural Engineering, Volume II: Assembly in hybrid and biological systems, (Liu, X.Y. and De J.J. Yoreo, editors). Kluewer Academic Publishers, New York.Google Scholar
Duckworth, O.W. and Martin, S.T. (2004) Dissolution rates and pit morphologies of rhombohedral carbonate minerals. American Mineralogist, 89, 554563.CrossRefGoogle Scholar
Eldhadj, S., de Yoreo, J.J., Hoyer, J.R. and Dove, P.M. (2006a) Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proceedings of the National Academy of Sciences, 103, 1923719242.CrossRefGoogle Scholar
Eldhadj, S., Salter, E.A., Wierzbicki, A., de Yoreo, J.J., Han, N. and Dove, P.M. (2006b) Peptide controls on calcite mineralization: polyaspartate chain length affects growth kinetics and acts as a stereochemical switch on morphology. Crystal Growth & Design, 6, 197201.CrossRefGoogle Scholar
Freij, S.J., Putnis, A. and Astilleros, J.M. (2004) Nanoscale observations of the effect of cobalt on calcite growth and dissolution. Journal of Crystal Growth, 267, 288300.CrossRefGoogle Scholar
Freij, S.J., Godelitsas, A. and Putnis, A. (2005) Crystal growth and dissolution processes at the calcite–water interface in the presence of zinc ions. Journal of Crystal Growth, 273, 535545.CrossRefGoogle Scholar
Glynn, P.D. and Reardon, E.J. (1990) Solid-solution aqueous-solution equilibria: thermodynamic theory and representation. American Journal of Science, 290, 164201.CrossRefGoogle Scholar
Godelitsas, A., Astilleros, J.M., Hallam, K.R., Löns, J., and Putnis, A. (2003) Microscopic and spectroscopic investigation of the calcite surface interacted with Hg(II) in aqueous solutions. Mineralogical Magazine, 67, 11931204.CrossRefGoogle Scholar
Gratz, A.J., Hillner, P.E. and Hansma, P.K. (1993) Step dynamics and spiral growth on calcite. Geochimica et Cosmochimica Acta, 57, 491495.CrossRefGoogle Scholar
Gutjahr, A., Dabringhaus, H. and Lacmann, R. (1996) Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite Growth I. and dissolution rates in water. Journal of Crystal Growth, 158, 296309.CrossRefGoogle Scholar
Harstad, A.O. and Stipp, S.L.S. (2007) Calcite dissolution: effects of trace cations naturally present in Iceland spar calcites. Geochimica et Cosmochimica Acta, 71, 5670.CrossRefGoogle Scholar
Hay, M.B., Workman, R.K. and Manne, S. (2003) Mechanisms of metal ion sorption on calcite: composition mapping by lateral force microscopy. Langmuir, 19, 37273740.CrossRefGoogle Scholar
Henriksen, K., Stipp, S.L.S., Young, J.R. and Marsh, M.E. (2004) Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function. American Mineralogist, 89, 17091716.CrossRefGoogle Scholar
Hillner, P.E., Gratz, A.J., Manne, S. and Hansma, P.K. (1992) Atomic scale imaging of calcite growth and dissolution in real time. Geology, 20, 359362.2.3.CO;2>CrossRefGoogle Scholar
Hillner, P.E., Manne, S., Hansma, P.K. and Gratz, A.J. (1993) Atomic force microscope: a new tool for imaging crystal growth processes. Faraday Discussions, 95, 191197.CrossRefGoogle Scholar
Hoch, A.R., Reddy, M.M. and Aiken, G.R. (2000) Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochimica et Cosmochimica Acta, 64, 6172.CrossRefGoogle Scholar
Hochella, M.F., Jr, Eggleston, C.M., Elings, V.B. and Thompson, M.S. (1990) Atomic structure and morphology of the albite (010) surface: an atomicforce microscope and electron diffraction study. American Mineralogist, 75, 78.Google Scholar
Hoffmann, U. and Stipp, S.L.S. (2001) The behaviour of Ni2+ on calcite surfaces. Geochimica et Cosmochimica Acta, 65, 41314139.CrossRefGoogle Scholar
Jordan, G. and Ramennensee, W. (1998) Dissolution rates of calcite obtained by scanning force microscopy: microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochimica et Cosmochimica Acta, 62, 941947.CrossRefGoogle Scholar
Kamiya, N., Kagi, H., Tsunomori, F., Tsuno, H, Notsu, K. (2004) Effect of trace lanthanum ion on dissolution and crystal growth of calcium carbonate. Journal of Crystal Growth, 267, 635645.CrossRefGoogle Scholar
Kim, R., Kim, C., Lee, S., Kim, J. and Kim, I. (2009) In situ atomic force microscopy study on the crystallization of calcium carbonate modulated by poly-(vinyl alcohol)s. Crystal Growth and Design, 9, 45844587.CrossRefGoogle Scholar
Kowacz, M. and Putnis, A. (2008) The effect of specific background electrolytes on water structure and solute hydration: consequences for crystal dissolution and growth. Geochimica et Cosmochimica Acta, 72, 44764487.CrossRefGoogle Scholar
Kowacz, M., Putnis, C.V. and Putnis, A. (2007) The effect of cation:anion ratio in solution on the mechanism of barite growth at constant supersaturation: role of the desolvation process on the growth kinetics. Geochimica et Cosmochimica Acta, 71, 51685179.CrossRefGoogle Scholar
Kubota, N. and Mullin, J.W. (1995) A kinetic model for crystal growth from aqueous solution in the presence of impurity. Journal of Crystal Growth, 152, 203208.CrossRefGoogle Scholar
Lardge, J.S., Duffy, D.M., Gillan, M.J., Watkins, M. (2010) Ab initio simulations of the interaction between water and defects on the calcite surface. Journal of Physical Chemistry C, 114, 26642668.CrossRefGoogle Scholar
Larsen, K., Bechgaard, K. and Stipp, S.L.S. (2010) The effect of the Ca2+ to CO32-activity ratio on spiral growth at the calcite {101¯4} surface. Geochimica et Cosmochimica Acta, 74, 20992109.CrossRefGoogle Scholar
Lasaga, A.C. and Lüttge, A. (2001) Variation of crystal dissolution rate based on a dissolution stepwave model. Science, 291, 24002404.CrossRefGoogle ScholarPubMed
Lea, A.S., Amonette, J.E., Baer, D.R., Liang, Y. and Colton, N.G. (2001) Microscopic effects of carbonate, manganese and strontium ions on calcite dissolution. Geochimica et Cosmochimica Acta, 65, 369379.CrossRefGoogle Scholar
Lea, A.S., Hurt, T.T., El-Azab, A., Amonette, J.E. and Baer, D.R. (2003) Heteroepitaxial growth of a manganese carbonate secondary nano-phase on the (101¯4) surface of calcite in solution. Surface Science, 524, 6377.CrossRefGoogle Scholar
Li, M. and Mann, S. (2002) Emergent nanostructures: water-induced mesoscale transformation of surfactant-stabilized amorphous calcium carbonate nanoparticles in reverse microemulsions. Advanced Functional Materials, 12, 773779.CrossRefGoogle Scholar
Liang, Y. and Baer, D.R. (1997) Anisotropic dissolution at the CaCO3 water interface. Surface Science, 373, 275287.CrossRefGoogle Scholar
Liang, Y., Baer, D.R., McCoy, J.M., Amonette, J.E. and LaFemina, J.P. (1996a) Dissolution kinetics at the calcite-water interface. Geochimicaet Cosmochimica Acta, 60, 48834887.CrossRefGoogle Scholar
Liang, Y., Baer, D.R., McCoy, J.M., Amonette, J.E. and LaFemina, J.P. (1996b) Interplay between step velocity and morphology during the dissolution of CaCO3 surface. Journal of Vacuum Science and Technology A, 14, 13681375.CrossRefGoogle Scholar
Lüttge, A. (2005) Etch pit coalescence, surface area, and overall mineral dissolution rates. American Mineralogist, 90, 17761783.CrossRefGoogle Scholar
Lüttge, A., Winkler, U. and Lasaga, A.C. (2003) Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution. Geochimica et Cosmochimica Acta, 67, 10991116.CrossRefGoogle Scholar
MacInnis, I.N. and Brantley, S.L. (1992) The role of dislocations and surface morphology in calcite dissolution. Geochimica et Cosmochimica Acta, 56, 11131126.CrossRefGoogle Scholar
Marti, O., Drake, B., Hansma, P. K. (1987) Atomic force microscopy of liquid-covered surfaces: atomic resolution images. Applied Physics Letters, 51, 484486.CrossRefGoogle Scholar
McCoy, J.M. and LaFemina, J.P. (1997) Kinetic Monte Carlo investigation of pit formation at the CaCO3 surface-water interface. Surface Science, 373, 288299.CrossRefGoogle Scholar
Morse, J.W. and Arvidson, R.S. (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58, 5184.CrossRefGoogle Scholar
Nehrke, G., Reichart, G.J., Van Cappellen, P., Meile, C. and Bijma, J. (2007) Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: non-Kossel crystal growth. Geochimica et Cosmochimica Acta, 71, 22402249.CrossRefGoogle Scholar
Nilsson, O. and Sternbeck, J. (1999) A mechanistic model for calcite crystal growth using surface speciation. Geochimica et Cosmochimica Acta, 63, 217225.CrossRefGoogle Scholar
Oelkers, E.H., Golubev, S.V., Pokrovsky, O.S. and Benezeth, P. (2011) Do organic ligands affect calcite dissolution rates? Geochimica et Cosmochimica Acta, 75, 17991813.CrossRefGoogle Scholar
Ohnesorge, F., and Binnig, G. (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science, 260, 1451.CrossRefGoogle Scholar
Orme, C.A., Noy, A., Wierzbicki, A., McBride, M.T., Grantham, M., Teng, H.H., Dove, P.M. and de Yoreo, J.J. (2001) Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature, 411, 775779.CrossRefGoogle ScholarPubMed
Paquette, J. and Reeder, R.J. (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59, 735749.CrossRefGoogle Scholar
Parkhurst, D.L. and C.A.J., Appelo (1999) Users guide to PHREEQC (version 2)-A Computer Program for Speciation, Batch Reaction, One Dimensional Transport, and Inverse Geochemical Calculations. Geological U.S. Survey Water-Resources Investigation Report 994259. 312pp.Google Scholar
Perdikouri, C., Putnis, C.V., Kasioptas, A. and Putnis, A. (2009) An atomic force microscopy study of the growth of a calcite surface as a function of calcium/ total carbonate concentration ratio in solution at constant supersaturation. Crystal Growth & Design, 9, 43444350.CrossRefGoogle Scholar
Perez-Garrido, C., Fernández-Díaz, L., Pina, C.M. and Prieto, M. (2007) In situ AFM observations of the interaction between calcite surfaces and Cd-bearing aqueous Solutions. Surface Science, 601, 54995509.CrossRefGoogle Scholar
Piana, S., Jones, F. and Gale, J.D. (2006) Assisted desolvation as a key kinetic step for crystal growth. Journal of the American Chemical Society, 128, 1356813574.CrossRefGoogle ScholarPubMed
Pina, C.M., Becker, U., Risthaus, P., Bosbach, D. and Putnis, A. (1998) Molecular-scale mechanisms of crystal growth in barite. Nature, 395, 483486.CrossRefGoogle Scholar
Plummer, L.N., Wigley, T.M.L. and Parkhurst, D.L. (1978) The kinetics of calcite dissolution in CiO2– water systems at 5ºC to 60ºC and 0.0 to 1.0 atm CiO2 . American Journal of Science, 278, 179216.CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J. (2002) Surface chemistry and dissolution kinetics of divalent metal carbonates. Environmental Science and Technology, 36, 426432.CrossRefGoogle ScholarPubMed
Prieto, M. (2009) Thermodynamics of Solid Solution-Aqueous Solution Systems. Pp. 4785. in: Thermodynamics and Kinetics of Water-Rock Interaction (Oelkers, E.H. and Schott, J., editors). Reviews in Mineralogy & Geochemistry, 70. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Qiu, S.R. and Orme, C.A. (2008) Dynamics of biomineral formation at the near-molecular level. Chemical Reviews, 108, 47844822.CrossRefGoogle ScholarPubMed
Rachlin, A.L., Henderson, G.S. and Goh, M.C. (1992) An atomic force microscope (AFM) study of the calcite cleavage plane: image averaging in Fourier space. American Mineralogist, 77, 904910.Google Scholar
Rashkovich, L.N., de Yoreo, J.J., Orme, C.A. and Chernov, A.A. (2006) In situ atomic force microscopy of layer-by-layer crystal growth and key growth concepts. Crystallography Reports, 51, 10631074.CrossRefGoogle Scholar
Reeder, R.J. (1996) Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60, 15431552.CrossRefGoogle Scholar
Ruiz-Agudo, E., Putnis, C.V., Jiménez-López, C. and Rodríguez-Navarro, C. (2009) An AFM study of calcite dissolution in concentrated saline solutions: the role of magnesium ions. Geochimica et Cosmochimica Acta, 73, 32013217.CrossRefGoogle Scholar
Ruiz-Agudo, E., Di Tommaso, D., Putnis, C.V., de Leeuw, N.H. and Putnis, A. (2010a) Interactions between organophosphonate-bearing solutions and (104) calcite surfaces: an atomic force microscopy and first-principles molecular dynamics study. Crystal Growth & Design, 10, 30223035.CrossRefGoogle Scholar
Ruiz-Agudo, E., Kowacz, M., Putnis, C.V. and Putnis, A. (2010b) The role of background electrolytes on the kinetics and mechanism of calcite dissolution. Geochimica et Cosmochimica Acta, 74, 12561267.CrossRefGoogle Scholar
Ruiz-Agudo, E., Putnis, C.V., Rodriguez-Navarro, C., Putnis, A. (2011a) Effect of pH on calcite growth at constant aCa2þ=aCiO2þ 3 and supersaturation. Geochimica et Cosmochimica Acta, 75, 284296.CrossRefGoogle Scholar
Ruiz-Agudo, E., Putnis, C.V., Wang, L.J. and Putnis, A. (2011b) Specific effects of background electrolytes on the kinetics of step propagation during calcite growth. Geochimica et Cosmochimica Acta, 75, 38033814.CrossRefGoogle Scholar
Ruiz-Agudo, E., Urosevic, M., Putnis, C.V., Rodriguez-Navarro, C., Cardell, C., Putnis, A. (2011c) Ionspecific effects on the kinetics of crystal dissolution. Chemical Geology, 281, 364371.CrossRefGoogle Scholar
Sand, K., Yang, M., Makovicky, E., Cooke, D., Hassenkam, T., Bechgaard, K. and Stipp, S. (2010) Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization. Langmuir, 26, 1523915247.CrossRefGoogle ScholarPubMed
Schott, J., Brantley, S., Crerar, D., Guy, C., Borcsik, M. and Willaime, C. (1989) Dissolution kinetics of strained calcite. Geochimica et Cosmochimica Acta, 53, 373382.CrossRefGoogle Scholar
Sethmann, I., Putnis, A., Grassmann, O. and Lobmann, P. (2005) Observation of nano-clustered calcite growth via an amorphous transient phase mediated by organic polyanions: a close match for biomineralization. American Mineralogist, 90, 12131217.CrossRefGoogle Scholar
Shiraki, R., Rock, P.A. and Casey, W.H. (2000) Dissolution kinetics of calcite in 0.1 M NaCl solution at room temperature: an atomic force microscopic (AFM) study. Aquatic Geochemistry, 6, 87108.CrossRefGoogle Scholar
Sjöberg, E.L. and Rickard, D.T. (1984) Calcite dissolution kinetics: surface speciation and the origin of the variable pH dependence. Chemical Geology, 42, 119136.CrossRefGoogle Scholar
Stack, A.G. and Grantham, M.C. (2010) Growth rate of calcite steps as a function of aqueous calcium-tocarbonate ratio: independent attachment and detachment of calcium and carbonate ions. Crystal Growth & Design, 10, 14091413.CrossRefGoogle Scholar
Stephenson, A.E., Wu, L., Wu, K.J., Hoyer, J.D., de Yoreo, J.J. and Dove, P.M. (2008) Peptides enhance Mg contents in calcite: insights to origins of vital effects. Science, 322, 274277.CrossRefGoogle Scholar
Sternbeck, J. (1997) Kinetics of rhodochrosite crystal growth at 25ºC: the role of surface speciation. Geochimica et Cosmochimica Acta, 61, 785793.CrossRefGoogle Scholar
Stipp, S.L.S. (1999) Toward a conceptual model of the calcite surface: hydration, hydrolysis and surface potential. Geochimica et Cosmochimica Acta, 63, 31213131.CrossRefGoogle Scholar
Stipp, S.L. and Hochella, M.F., Jr (1991) Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low-energy electron diffraction (LEED). Geochimica et Cosmochimica Acta, 55, 17231736.CrossRefGoogle Scholar
Stipp, S.L.S, Eggleston, C.M. and Nielsen, B.S. (1994) Calcite surface structure observed at micro-topographic and molecular scale with atomic force microscopy (AFM). Geochimica et Cosmochimica Acta, 58, 30233033.CrossRefGoogle Scholar
Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Pérez, R., Morita, S. and Custance, O. (2007) Chemical identification of individual surface atoms by atomic force microscopy. Nature, 446, 6467.CrossRefGoogle ScholarPubMed
Sunagawa, I. (1987) Morphology of Crystals. Terra Science Publications, Tokyo.Google Scholar
Teng, H.H. (2004) Control by saturation state on etch pit formation during calcite dissolution. Geochimica et Cosmochimica Acta, 68, 253262.CrossRefGoogle Scholar
Teng, H.H. and Dove, P.M. (1997) Surface site-specific interactions of aspartate with calcite during dissolution: implications for biomineralization. American Mineralogist, 82, 878887.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M. and de Yoreo, J.J. (1999) Reversed calcite morphologies induced by microscopic growth kinetics: insight into biomineralization. Geochimica et Cosmochimica Acta, 63, 25072512.CrossRefGoogle Scholar
Teng, H.H., Dove, P.M. and de Yoreo, J.J. (2000) Kinetics of calcite growth: surface processes and relationships to macroscopic rate laws. Geochimica et Cosmochimica Acta, 64, 22552266.CrossRefGoogle Scholar
Teng, H.H. Chen, Y. and Pauli, E. (2006) Direction specific interactions of 1,4-dicarboxcylic acid with calcite surfaces. Journal of American Chemical Society, 128, 1448214484.CrossRefGoogle ScholarPubMed
Tesoriero, A.J. and Pankow, J.F. (1996) Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochimica et Cosmochimica Acta, 60, 10531063.CrossRefGoogle Scholar
Treccani, L., Mann, K., Heinemann, F. and Fritz, M. (2006) Perlwapin, an abalone nacre protein with three fourdisulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophysical Journal, 91, 26012608.CrossRefGoogle Scholar
Urosevic, M., Rodr’guez-Navarro, C.M., Putnis, C.V., Cardell, C., Putnis, A. and Ruiz-Agudo, E. (2012) In situ, nanoscale observations of the dissolution of dolomite cleavage surfaces, Geochimica et Cosmochimica Acta, 80, 113.CrossRefGoogle Scholar
Van Enckevort, W.J.P., van den Berg, A.C.J.F., Kreuwel, K.B.G. Derksen, A.J. and Couto, M.S. (1996) Impurity blocking of growth steps: experiments and theory. Journal of Crystal Growth, 166, 156161.CrossRefGoogle Scholar
Vavouraki, A.I., Putnis, C.V., Putnis, A. and Koutsoukos, P. (2008) An atomic force microscopy study of the growth of calcite in the presence of sodium sulfate. Chemical Geology, 253, 243251.CrossRefGoogle Scholar
Vavouraki, A.I., Putnis, C.V., Putnis, A. and Koutsoukos, P. (2010) Crystal growth and dissolution of calcite in the presence of fluoride ions: an atomic force microscopy study. Crystal Growth & Design, 10, 6069.CrossRefGoogle Scholar
Vinson, M.D. and Luttge, A. (2005) Multiple lengthscale kinetics: an integrated study of calcite dissolution rates and strontium inhibition. American Journal of Science, 305, 119146.CrossRefGoogle Scholar
Vinson, M.D., Arvidson, R.S. and Luttge, A. (2007) Kinetic inhibition of calcite (104) dissolution by aqueous manganese (II). Journal of Crystal Growth, 307, 116125.CrossRefGoogle Scholar
Walters, D.A., Smith, B.L., Belcher, A.M., Paloczi, G.T. Stucky, G.D., Morse, D.E. and Hansma, P.K. (1997) Modification of calcite crystal growth by abalone shell proteins: an atomic force microscope study. Biophysical Journal, 72, 14251433.CrossRefGoogle ScholarPubMed
Wang, L.J., Ruiz-Agudo, E., Putnis, C.V., Putnis, A. (2011) Direct observations of the modification of calcite growth morphology by Li+ through selectively stabilizing energetically unfavourable faces. ChemEngComm, 13, 39623966.Google Scholar
Wasylenki, L.E., Dove, P.M. and de Yoreo, J.J. (2005a) Effects of temperature and transport conditions on calcite growth in the presence of Mg2+: Implications for paleothermometry. Geochimica et Cosmochimica Acta 69, 42274236.CrossRefGoogle Scholar
Wasylenki, L.E., Dove, P.M. Wilson, D.S. and Yoreo, J.J.D. (2005b) Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects. Geochimica et Cosmochimica Acta, 69, 30173027.CrossRefGoogle Scholar
Weiner, S. (1979) Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcified Tissue International, 29, 163167.CrossRefGoogle ScholarPubMed
Wierzbicki, A., Sikes, C.S,. Madura, J.D. and Drake, B. (1994) Atomic force microscopy and molecular modeling of protein and peptide binding to calcite. Calcified Tissue International, 54, 133141.CrossRefGoogle Scholar
Xu, M. and Higgins, S.R. (2011) Effects of magnesium ions on near-equilibrium calcite dissolution: step kinetics and morphology. Geochimica et Cosmochimica Acta, 75, 719733.CrossRefGoogle Scholar
Xu, M., Hu, X., Knauss, K.G. and Higgins, S.R. (2010) Dissolution kinetics of calcite at 50–70. C: an atomic force microscopic study under near-equilibrium conditions. Geochimica et Cosmochimica Acta, 74, 42854297.CrossRefGoogle Scholar
Yang, M., Stipp, S.L.S. and Harding, J. (2008) Biological control on calcite crystallization by polysaccharides. Crystal Growth & Design, 8, 40664074.CrossRefGoogle Scholar
Zhang, J. and Nancollas, G.H. (1998) Kink density and rate of step movement during growth and dissolution of an AB crystal in a nonstoichiometric solution, Journal of Colloid and Interface Science, 200, 131145.CrossRefGoogle Scholar
Zuddas, P. and Mucci, A. (1998) Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength. Geochimica et Cosmochimica Acta, 62, 757766.CrossRefGoogle Scholar