Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T08:27:07.107Z Has data issue: false hasContentIssue false

Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2

Published online by Cambridge University Press:  05 July 2018

M. T. Dove*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
M. S. Craig
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
D. A. Keen
Affiliation:
ISIS Facility, Rutherford Appleton Laboratory, CLRC, Chilton, Didcot, Oxfordshire OX11 0QX, UK
W. G. Marshall
Affiliation:
ISIS Facility, Rutherford Appleton Laboratory, CLRC, Chilton, Didcot, Oxfordshire OX11 0QX, UK
S. A. T. Redfern
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
K. O. Trachenko
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
M. G. Tucker
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
*

Abstract

The crystal structure of the high-pressure phase-II of cristobalite has been solved by neutron diffraction (space group P21/c, a = 8.3780(11) Å, b = 4.6018(6) Å, c = 9.0568(13) Å, β = 124.949(7)°, at P = 3.5 GPa). This phase corresponds to a distortion of the high-temperature cubic β-phase, rather than of the ambient temperature and pressure tetragonal α-phase.

Type
Letters
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artacho, E., Sánchez-Portal, D., Ordejón, P., García, A. and Soler, J.M. (1999) Linear-scaling ab-initio calculati ons for large and complex systems. Physica Status Solidi (b), 215, 809–7.3.0.CO;2-0>CrossRefGoogle Scholar
Besson, J.M., Nelmes, R.J., Hamel, G., Loveday, J.S., Weill, G. and Hull, S. (1992). Neutron powder diffraction above 10 GPa. Physica B, 180, 907–10.CrossRefGoogle Scholar
Downs, R.T. and Palmer, D.C. (1994) The pressure behaviour of α-cristobalite. Amer. Mineral., 79, 914.Google Scholar
Gale, J.D. (1997) Gulp: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans., 93, 629–37.CrossRefGoogle Scholar
Hammonds, K.D., Dove, M.T., Giddy, A.P., Heine, V. and Winkler, B. (1996) Rigid unit phonon modes and structural phase transitions in framework silicates. Amer. Mineral., 81, 1057–79.CrossRefGoogle Scholar
Nelmes, R.J., Loveday, J.S., Wilson, R.M., Besson, J.M., Klotz, S., Hamel, G. and Hull, S. (1993) Structure studies at high pressure using neutron powder diffraction. Trans. Amer. Crystallogr. Assoc., 29, 1927.Google Scholar
Onodera, A., Suito, K., Namba, J., Tanigucji, Y., Horikawa, T., Miyoshi, M., Shomomura, O. and Kikegawa, T. (1997) Synchrotron X-ray-diffraction study of α-cristobalite at high pressure and high temperature. High Pressure Res., 15, 307–19.CrossRefGoogle Scholar
Ordejón, P., Artacho, E. and Soler, J.M. (1996) Selfconsistent order-N density-functional calculations for very large systems. Phys. Rev. B, 15, 10441–4.CrossRefGoogle Scholar
Palmer, D.C., Hemley, R.J. and Prewitt, C.T. (1994) Raman spectroscoic study of high-pressure phase transitions in cristobalite. Phys. Chem. Miner., 21, 481–8.CrossRefGoogle Scholar
Palmer, D.C. and Finger, L.W. (1994) Pressure-induced phase transition in cristobalite: an X-ray powder diffraction study to 4.4 GPa. Amer. Mineral., 79, 18.Google Scholar
Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, J.D. (1992) Iterative minimisation techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Modern Phys., 64, 1045–97.CrossRefGoogle Scholar
Pryde, A.K.A., and Dove, M.T. (1998) On the sequence of phase transitions in tridymite. Phys. Chem. Miner., 26, 171–9.CrossRefGoogle Scholar
Salje, E.K.H., Rehmann, S., Pobell, F., Morris, D., Knight, K.S., Herrmannsdorfer, T. and Dove, M.T. (1997) Crystal structure and paramagnetic behaviour of ε-WO3-x . J. Phys.: Cond. Matt., 9, 6563–77.Google Scholar
Sanders, M.J., Leslie, M. and Catlow, C.R.A. (1984). Interatomic potentials for SiO2. J. Chem. Soc.: Chem. Comm., 1271-3.CrossRefGoogle Scholar
Smith, W. and Forester, T.R. (1996). DL_POLY_2.0 – A general purpose parallel molecular dynamics simulation package. J. Mol. Graphics, 14, 136–41.CrossRefGoogle ScholarPubMed
Stokes, H.T. and Hatch, D.M. (1988) Isotropy Subgroups of the 230 Crystallographic Space Groups. World Scientific, Singapore.Google Scholar
Tsuneyuki, S., Tsukada, M., Aoki, H. and Matsui, Y. (1988). First principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett., 61, 869–72.CrossRefGoogle ScholarPubMed
Von Dreele, R.B. and Larson, A.C. (1986) Los Alamos National Laboratory Report, LAUR 86748.Google Scholar
Wilson, R.M., Loveday, J.S., Nelmes, R.J., Slotz, S. and Marshall, W.G. (1995). Attenuation corrections for the Paris-Edinburgh cell. Nucl. Instr. Methods, 354, 145–8.CrossRefGoogle Scholar