Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T13:47:16.287Z Has data issue: false hasContentIssue false

The crystal structure of russellite; a re-determination using neutron powder diffraction of synthetic Bi2WO6

Published online by Cambridge University Press:  05 July 2018

Kevin S. Knight*
Affiliation:
ISIS Science Division, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX12 0QX

Abstract

The crystal structure of the displacive ferroelectric mineral russellite, Bi2WO6, has been determined using Rietveld profile refinement of high-resolution, time of flight, neutron powder diffraction data on the synthetic compound. Russellite is orthorhombic, Pca21, with a 5.43726(2) Å, b 16.43018(5) Å, c 5.458422) Å, Z = 4 and is isostructural with the bismuth molybdate mineral koechlinite, Bi2MoO6. The structure consists of layers of tilted WO6 octahedra sandwiched between layers of bismuth and oxygen with the tungsten displaced from the centre of the octahedron by 0.278 Å. The orientations of the lone-pair electrons in the Bi3+ cations have been inferred from the 3.0 Å coordination shells of both crystallographically independent bismuths, and have been found to be non-centrosymmetric, an effect which may give rise to the tilting of the WO6 octahedra. New laboratory source X-ray powder diffraction data are presented for russellite, which, with supplementary synchrotron powder diffractometry, corroborate the new space group and structure determination.

Type
Crystal Structures
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, S.C., Kurtz, S.K., and Jamieson, P.B. (1968) Atomic displacement relationship to Curie temperature and spontaneous polarisation in dis-placive ferroelectrics. Phys. Rev., 172, 551–3.CrossRefGoogle Scholar
Aurivillius, B. (1952) The structure of Bi2NbOsF and isomorphous compounds. Arkiv fur Kemi, 5, 3947.Google Scholar
Ahtee, M., Unonius, L., Nurmela, M., and Suortti, P. (1984) A Voightian as profile shape function in Rietveld refinement. J. Appl. Crystallogr., 17, 352-7.CrossRefGoogle Scholar
Blasse, G. (1966) Polymorphism of Bi2MoO6. J. Inorg. Nucl. Chem., 28, 1124-5.CrossRefGoogle Scholar
Bonanos, N. (1989) High oxide ion conductivity in bismuth uranate, Bi2UO6. Mat. Res. Bull., 24, 1531–40.CrossRefGoogle Scholar
Bonse, U. and Hart, M. (1965) Tailless X-ray single-crystal reflection curves obtained by multiple reflection. Appl Phys Letters, 7, 238–40.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cry st., B41, 244-7.CrossRefGoogle Scholar
Brown, P.J. and Matthewman, J.C. (1987) The Cambridge crystallography subroutine library—mark 3 user's manual. Rutherford Appleton Laboratory Report, RAL-87-010.Google Scholar
Cernik, R.J., Murray, P.K., Pattison, P., and Fitch, A.N. (1989) A two circle powder diffractometer for synchrotron radiation with closed loop encoder system. Daresbury Preprint DL/SCI/P669E.Google Scholar
David, W.I.F. and Matthewman, J.C. (1985) Profile refinement of powder diffraction patterns using the Voight function. J. Appl. Crystallogr., 18, 461–6.CrossRefGoogle Scholar
Akporiaye, D.E., Ibberson, R.M., and Wilson, C.C. (1988) The high resolution powder diffracto-meter at ISIS—an introductory users guide. Rutherford Appleton Laboratory Report.Google Scholar
DuMond, J.W.M. (1937) Theory of the use of more than two successive X-ray reflections to obtain increased resolving power. Phys. Rev., 52, 872–83.CrossRefGoogle Scholar
Gal'perin, E. L., Erman, Y. Ya., Kolchin, I.K., Belova, M.A., and Chernyshev, K.S. (1966) X-ray diffraction examination of the Bi203-WO3 system. Zh. Neorgan. Khim., 11, 1125–30.Google Scholar
Glazer, A.M. (1972) The classification of tilted octahedra in perovskites. Acta Cryst., B28, 3384-92.CrossRefGoogle Scholar
Hey, M.H. and Bannister, F.A. (1938) Russellite, a new British mineral. Mineral. Mag., 25, 4155.Google Scholar
Hoda, S.N. and Chang, L.L.Y. (1974) Phase relations in the system Bi203-WO3. J. Amer. Ceram. Soc., 57, 323-5.CrossRefGoogle Scholar
Hodge, L.C. (1970) Russellite: second occurrence. Mineral. Mag., 37, 705–7.CrossRefGoogle Scholar
Ismailzade, I.G., Mirishli, F.A. (1970) High-temperature X-ray and dielectric investigation of Bi2WO6. KristaUografiya, 14, 738–9.Google Scholar
Johnson, M.W. and David, W.I.F. (1985) HRPD: The high resolution powder diffractometer at the SNS. Rutherford Appleton Laboratory Report RAL-85-112.Google Scholar
Kagule-Magambo, J. (1969) Ann. Rept. Geol. Surv. and Mines Dept. Uganda, 6-8. [M.A. 72-1015.]Google Scholar
Keller, E. (1989) Some computer drawings of molecular and solid-state structures. J. Appl. Crystallogr., 22, 1922.CrossRefGoogle Scholar
Koester, L., Rauch, H., Herkens, K., and Schroder, K. (1981) Summary of neutron scattering lengths, K.F.A. Report, Jul-1755.Google Scholar
Lines, M.E. and Glass, A.M. (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford.Google Scholar
Matthewman, J.C., Thompson, P. , and Brown, P.J. (1982) The Cambridge crystallography subroutine library. J. Appl. Crystallogr., 15, 167–73.CrossRefGoogle Scholar
Murumatsu, K., Watanabe, A., and Goto, M. (1978) Flux growth of Bi2WO6 below the phase transition temperature. J. Crystal Growth, 44, 50–2.CrossRefGoogle Scholar
Newkirk, H.W., Quadflieg, P., Liebertz, J., and Kockel, A. (1972) Growth, crystallography and dielectric properties of Bi2WO6. Ferroelectrics, 4, 51–5.CrossRefGoogle Scholar
Payne, D.A. and Theokritoff, S. (1975) Hydrothermal recrystallisation of Bi2WO6. Mat. Res. Bull., 10, 437–42.CrossRefGoogle Scholar
Rietveld, H.M. (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Cryst., 22, 151–2.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 2, 6571.CrossRefGoogle Scholar
Russell, A. (1944) Some minerals new or rare to Britain. Mineral. Mag., 27, 110.Google Scholar
Sabine, T.M. (1985) Extinction in polycrystalline materials. Aust. J. Phys., 38, 507–18.CrossRefGoogle Scholar
Stefanovich, S. Yu. and Venetsev, Yu. N. (1973) Definition of some parameters of ferroelectric crystals by the SHG method. Phys. Stat. Sol.(a), 20, K4952.CrossRefGoogle Scholar
Theobald, F., Laarif, A. and Hewat, A.W. (1984) The structure of koechlinite bismuth molybdate—a controversy resolved by neutron diffraction. Ferroelectrics, 56, 219–37.CrossRefGoogle Scholar
Teller, R.G., Brazdil, J.F., Grasselli, R.K., and Jorgensen, J.D. (1984) The structure of y bismuth molybdate, Bi2MoO6, by powder neutron diffraction. Acta Crystl., C40, 2001-5.CrossRefGoogle Scholar
Utkin, V.I., Roginskaya, Yu. E., Voronkova, V.I., Yanovskii, V.K., Galyamov, B. Sh., and Venetsev, Yu. N. (1980) Dielectric properties, electrical conductivity and relaxation phenomena in ferroelectric BizWO6. Phys. Stat. Sol.(a), 59, 7582.CrossRefGoogle Scholar
Van Den Elzen, A. F. and Rieck, G.D. (1973) Redetermination of the structure of Bi2MoO6, Koechlinite. Acta Cryst. B29, 2436-8.CrossRefGoogle Scholar
Voronkova, V.I. and Yanovskii, V.K. (1977) Growth of BizWO6 crystals. Kristallografiya, 22, 429–30.Google Scholar
Watanabe, A. (1982) Polymorphism in Bi2WO6. J. Solid State Chemistry, 41, 160–5.CrossRefGoogle Scholar
Wiles, D.B. and Young, R.A. (1981) A new computer program for the analysis of X-ray powder diffraction patterns. J. Appl. Crystallgor., 14, 149–51.CrossRefGoogle Scholar
Windsor, C.G. (1981) Pulsed neutron scattering. Taylor and Francis, London.Google Scholar
Winger, L.A., Bradt, R.C., and Hoke, J.H. (1980) Transformational superplasticity of Bi2WO6 and Bi2MoO6. J. Amer. Ceramic Soc., 63, 291–4.CrossRefGoogle Scholar
Wolfe, R.W., Newnahm, R.E., and Kay, M.I. (1969) Crystal structure of BizWO6. Solid State Comm., 7, 1797–801.CrossRefGoogle Scholar
Yanovskii, V.K., Voronkova, V.I., Alexandrovskii, A.L., and D'yakov, V. A. (1975) Structure and properties of Bi2WO6 ferroelectric crystals. Dokl. Akad. Nauk SSSR, 222, 94–5.Google Scholar
Young, B., Fortey, N.J., and Nancarrow, P.H.A. (1986) An occurrence of tungsten mineralisation in the Eskdale intrusion, west Cumbria. Proc. Yorkshire Geol. Soc., 46, 1521.CrossRefGoogle Scholar
Young, B., Fortey, N.J., and Nancarrow, P.H.A. (1991) Russellite from Buckbarrow Beck, Cumbria, England. J. Russell Society, 4, 37.Google Scholar