Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T08:36:32.206Z Has data issue: false hasContentIssue false

The crystal structure and chemistry of high-aluminium phlogopite

Published online by Cambridge University Press:  05 July 2018

Elisa Alietti
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Via S. Eufemia 19, I-41100 Modena, Italy
Maria Franca Brigatti
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Via S. Eufemia 19, I-41100 Modena, Italy
Luciano Poppi
Affiliation:
Dipartimento di Scienze della Terra, Università di Modena, Via S. Eufemia 19, I-41100 Modena, Italy

Abstract

Crystal structure refinements were performed on five Al-rich phlogopite-1M crystals (1.50 ⩽ Al3+ ⩽ 1.97 atoms per formula unit) from skarns of the Predazzo and Monzoni Hills petrographic area (north-east Italy) with the aim of characterizing geometrical variation produced by Al3+ increase. The charge imbalance was mostly compensated for by substitutions of highly charged cations in the octahedral sheet (Al3+ and/or Fe3+ for Mg2+). The refinements were carried out in the mean space group C2/m and gave agreement values (R) between 0.025 and 0.030. For some additional crystals, only chemistry and/or unit cell parameters were determined. In all samples the tetrahedra are more regular and larger than those previously reported in the literature for phlogopite crystals and the misfit between tetrahedral and octahedral sheets, produced by the increase in the tetrahedral edges, is mostly compensated for by the tetrahedral ring angle rotation α (10.2 °⩽ α ⩽ 12.5°), whereas the octahedral sheet features seem affected only by local crystal-chemical variations.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. and Gottardi, G. (1988) The determination of the Al-content in the tetrahedra of framework silicates. Zeits. Kristallogr., 184, 49–61.CrossRefGoogle Scholar
Bailey, S. W. (1984) Crystal chemistry of the true micas. In Reviews in Mineralogy (Bailey, S. W., ed.) Mineralogical Society of America, Washington, 13, 13–60.Google Scholar
Bigi, S. and Brigatti, M. F. (1994) Crystal chemistry and microstructures of plutonic biotite. Amer. Mineral., 79, 64–73.Google Scholar
Brigatti, M. F. and Davoli, P. (1990) Crystal-structure refinements of 1M plutonic biotites. Amer. Mineral., 75, 305–13.Google Scholar
Brigatti, M. F., Galli, E. and Poppi, L. (1991) Effect of Ti substitution in biotite-lM crystal chemistry. Amer. Mineral, 76, 1174–83.Google Scholar
Brigatti, M. F. and Poppi, L. (1993) Crystal chemistry of Ba-rich trioctahedral micas-1M. Eur. J. Mineral., 5, 857–71.CrossRefGoogle Scholar
Busing, W. R., Martin, K. O. and Levy, H. S. (1962) ORFLS, a Fortran crystallographic least-square program. U. S. National Technical Information Service, ORNL-TM-305.Google Scholar
Donnay, G., Donnay, J. D. H. and Takeda, H. (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Ada Crystallogr., 17, 1374–81.CrossRefGoogle Scholar
Hazen, R. M. and Burnham, C. W. (1973) The crystal structure of one-layer phlogopite and annite. Amer. Mineral., 58, 889–900.Google Scholar
Hewitt, D. A. and Wones, D. R. (1975) Physical Properties of some synthetic Fe-Mg-Al trioctahedral biotites. Amer. Mineral., 60, 854–62.Google Scholar
Joswig, W. (1972) Neutronenbeugungsmessungen an einem lM-phlogopit. Neues Jahrb. Mineral. Mh., 1-11.Google Scholar
Liebau, F. (1985) Structural chemistry of silicates. Springer, Heidelberg.CrossRefGoogle Scholar
McCauley, J. W., Newnham, R. E. and Gibbs, G. V. (1973) Crystal structure analysis of synthetic fluorophlogopite. Amer. Mineral., 58, 249–54.Google Scholar
Meyrowitz, R. (1970) New semi-microprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoborate decomposition. Anal. Chem., 42, 1110–13.CrossRefGoogle Scholar
Morandi, N., Nannetti, M. C, Pirani, R. and Resmi, U. (1984) La mica verde delle rocce di contatto nell'area Predazzo-Monzoni. Rend. Soc. It. Min. Petr., 39, 677–93.Google Scholar
North, A. C. T., Phillips, D. C. and Mathews, F. S. (1968) A semi-empirical method of absorption correction. Ada Crystallogr., A24, 351–9.CrossRefGoogle Scholar
Olesch, M. (1975) Synthesis and solid solubility of trioctahedral brittle micas in the system CaO-MgO-AI2O3-S1O2-H2O. Amer. Mineral., 60, 188-9.Google Scholar
Robinson, K., Gibbs, G. V. and Ribbe, P. H. (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science, 172, 567–70.CrossRefGoogle ScholarPubMed
Takeda, H. and Morosin, B. (1975) Comparison of observed and predicted structural parameters of mica at high temperature. Ada Crystallogr., B31, 2444–52.CrossRefGoogle Scholar
Takeda, H. and Ross, M. (1975) Mica polytypism: Dissimilarities in the crystal structures of coexisting 1M and 2Mi biotite. Amer. Mineral., 60, 1030–40.Google Scholar
Toraya, H. (1981) Distortions of octahedra and octahedral sheets in \M micas and the relation to their stability. Zeits. Kristallogr., 157, 173–90.Google Scholar
Weiss, Z., Rieder, M. and Chmielova, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. Eur. J. Mineral., 4, 665–82.CrossRefGoogle Scholar
Weiss, Z., Rieder, M., Chmielova, M., Krajicek (1985) Geometry of the octahedral coordination in micas: a review of refined structures. Amer. Mineral., 70, 747–57.Google Scholar