Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:55:19.750Z Has data issue: false hasContentIssue false

Crystal chemistry of clinopyroxenes from Linosa Volcano, Sicily Channel, Italy: implications for modelling the magmatic plumbing system

Published online by Cambridge University Press:  05 July 2018

L. Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
F. Tasselli
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
F. Olmi
Affiliation:
CNR – Istituto di Geoscienze e Georisorse, Via La Pira 4, I-50121 Firenze, Italy
A. Peccerillo
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Perugia, Piazza Università, I-06100, Perugia, Italy
S. Menchetti*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
*

Abstract

The Island of Linosa is a small part of the large submarine volcanic complex which is locatedat the SW edge of the Linosa Graben, Sicily Channel. The island was formed between 1.06±0.10 and 0.53±0.07 Ma, through three main stages of activity: Paleo-Linosa, Arena Bianca and Monte Bandiera. Major and trace element data show that the compositional variability of the three activity stages is limited, with most of the rocks showing basaltic to hawaiitic composition. Evolved benmoreites and trachytes are foundas lithics in some pyroclastic units of Paleolinosa. The mafic rocks of the three stages show porphyritic texture, with phenocryst assemblages characterized by olivine, clinopyroxene and plagioclase. The volume ratio of olivine vs. clinopyroxene decreases from early to late stages of activity in mafic rocks with comparable major element composition. Clinopyroxene phenocrysts from mafic rocks of the three stages have poorly variable composition, clustering in the augite field. Phenocrysts from the first activity stage (Paleo-Linosa), show a slight increase in TiO2, Al2O3 and CaO, and a decrease of Fe2O3 (total) with the increasing SiO2 content of the host rocks. Crystals from the second and the third stage (Arena Bianca and Monte Bandiera) display a slightly more restricted range of FeOtot, frequently with very high MgO, Al2O3 and TiO2 contents. Crystal chemical investigation of clinopyroxenes from rocks of the three stages with comparable degrees of evolution, revealed significant variation of structural parameters, in particular VM1 and Vcell. These show a consistent decrease, passing from clinopyroxenes of the early stage to crystals extracted from the mafic lavas of stages 2 and 3. Given the similar compositional ranges of the host rocks, structural variations of clinopyroxenes are interpreted to reveal modifications of crystallization pressure, which increased, passing from Paleo-Linosa to the Arena Bianca and Monte Bandiera stages. Given this information, the observed crystal-chemical variations provide information on the depth of magma reservoirs and on the evolution of the plumbing system of Linosa volcano.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A.L. and Ray, L. (1970) Correction factors for electron probe analysis of silicate, oxides, carbonates, phosphates, and sulfates. Anal ytical Chemistry, 48, 14081414.CrossRefGoogle Scholar
Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicate and oxides. Journal of Geology, 76, 382403.CrossRefGoogle Scholar
Burnham, C.W., Clark, J.R., Papike, J.J. and Prewitt, C.T. (1967) A proposed crystallographic nomenclature for clinopyroxenes structure. Zeitschrift für Kristallographie, 125, 109119.CrossRefGoogle Scholar
Cellai, D., Conticelli, S. and Menchetti, S. (1994) Crystal-chemistry of clinopyroxenes from potassic and ultrapotassic rocks in central Italy: implications on their genesis. Contributions to Mineralogy and Petrology, 116, 301315.CrossRefGoogle Scholar
Dal Negro, A., Carbonin, S., Molin, G.M., Cundari, A. and Piccirillo, E.M. (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional and alkaline basaltic rocks. Pp. 117150 in: Advances in Physical Geochemistry, Vol. 2 (Saxena, S.K., editor). Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Dal Negro, A., Cundari, A., Piccirillo, E.M., Molin, G.M. and Uliana, D. (1986) Distintive crystal chemistry and site configuration of the clinopyroxene from alkali basaltic rocks: the Nyambeni clinopyroxene suite, Kenya. Contributions to Mineralogy and Petrology, 92, 3543.CrossRefGoogle Scholar
Dal Negro, A., Molin, G.M., Secco, L., Cundari, A. and Piccirillo, E.M. (1989) Crystal-chemistry of clinopyroxene and its genetic Significance: a new approach. In: The lithosphere in Italy: advances in Earth sciences research (Boriani, A., Bonafede, M., Piccardo, G.B., and Vai, G.B., editors). Atti dei Convegni Lincei, 80, 271295.Google Scholar
Hamilton, W.C. (1965) Significance tests on the crystallographic R factors. Acta Crystallographica, 18, 502510.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. Eds. (1974) International Tables for X-ray Crystallography, Vol. IV, 366 pp., Kynock, Birmingham, UK.Google Scholar
Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical Classification of common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523548.CrossRefGoogle Scholar
Lanti, E., Lanzafame, G., Rossi, P.L., Tranne, C.A. and Calanchi, N. (1988) Vulcanesimo e tettonica nel Canale di Sicilia: l'isola di Linosa. Mineralogica et Petrographica Acta, 31, 6993.Google Scholar
Lanzafame, G., Rossi, P.L., Tranne, C.A. and Lanti, E. (1994) Carta geologica dell'isola di Linosa 1:5.000. SELCA, Firenze, Italy.Google Scholar
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical Classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745750.CrossRefGoogle Scholar
Mahood, G.A. and Baker, D.R. (1986) Experimental constraints on depth of fractionation of mildly alkali basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contributions to Mineralogy and Petrology, 93, 251264.CrossRefGoogle Scholar
Malgarotto, C., Molin, G.M. and Zanazzi, P.F. (1993 a) Cooling history of a dyke on Alicudi (Aeolian Islands) from intracrystalline Fe2+-Mg exchange reaction in clinopyroxene. European Journal of Mineralogy, 5, 755762.CrossRefGoogle Scholar
Malgarotto, C., Molin, G.M. and Zanazzi, P.F. (1993 b) Crystal chemistry of clinopyroxenes from Filicudi and Salina (Aeolian Islands, Italy). Geothermometry and barometry. European Journal of Mineralogy, 5, 915923.CrossRefGoogle Scholar
Molin, G. and Zanazzi, P.F. (1991) Intracrystalline Fe2+- Mg ordering in augite: experimental study and geothermometric applications. European Journal of Mineralogy, 3, 863875.CrossRefGoogle Scholar
Morimoto, N. (1989) Nomenclature of pyroxenes. Canadian Mineralogist, 27, 143156.Google Scholar
Nazzareni, S., Molin, G., Peccerillo, A. and Zanazzi, P.F. (1998) Structural and chemical variations in clinopyroxenes from the island of Alicudi (Aeolian arc) and their implications for conditions of crystallisation. European Journal of Mineralogy, 10, 291300.CrossRefGoogle Scholar
Nazzareni, S., Molin, G., Peccerillo, A. and Zanazzi, P.F. (2001) Volcanological implications of crystalchemical variations in clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy). Bulletin of Volcanology, 63, 7382.CrossRefGoogle Scholar
Nimis, P. (1995) A clinopyroxene geobarometer for basaltic systems based on crystal structure modeling. Contributions to Mineralogy and Petrology, 121, 115125.CrossRefGoogle Scholar
Nimis, P. (1999) Clinopyroxene geobarometry of magmatic rocks, Part 2. Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contributions to Mineralogy and Petrology, 135, 6274.CrossRefGoogle Scholar
Nimis, P. and Ulmer, P. (1998) Clinopyroxene geobarometry of magmatic rocks, Part 1. An expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems. Contributions to Mineralogy and Petrology, 133, 122135.CrossRefGoogle Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semi-empirical method of absorbtion correction. Acta Crystallographica, A24, 351359.CrossRefGoogle Scholar
O'Hara, M.J. and Mathews, E. (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society of London, 138, 237277.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation; a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Rossi, G., Oberti, R., Dal Negro, A., Molin, G.M. and Mellini, M. (1987) Residual electron density at the M2 site in C2/c clinopyroxenes: relationships with bulk chemistry and sub-solidus evolution. Physics and Chemistry of Minerals, 14, 514520.CrossRefGoogle Scholar
Rossi, P.L., Tranne, C.A., Calanchi, N. and Lanti, E. (1996) Geology, stratigraphy and volcanological evolution of the island of Linosa (Sicily Channel). Acta Vulcanologica, 8, 7390.Google Scholar
Salviulo, G., Secco, L., Marzoli, A., Piccirillo, E.M. and Nyobe, J.B. (2000) Ca-rich pyroxene from basic and silicic volcanic rocks from the Cameroon Volcanic Line (West-Africa): crystal chemistry and petrological Significance. Mineralogy and Petrology, 70, 7388.CrossRefGoogle Scholar
Sheldrick, G.M. (1993) SHELXL-93: A new structure refinement program. University of Göttingen, Germany.Google Scholar
Simkin, T. and Smith, J.V. (1970) Minor element distribution in olivine. Journal of Geology, 78, 304325.CrossRefGoogle Scholar