Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T00:05:19.519Z Has data issue: false hasContentIssue false

Crystal chemistry and formation mechanism of non-stoichiometric monoclinic K-jarosites

Published online by Cambridge University Press:  05 July 2018

I. E. Grey*
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
N. V. Y. Scarlett
Affiliation:
CSIRO Process Science and Engineering, Box 312 Clayton South, Victoria 3169, Australia
H. E. A. Brand
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
*

Abstract

Syntheses in acidified hydrothermal (HT) solutions (1 N H2SO4 or stronger) produce monoclinic non-stoichiometric K-jarosites which contain Fe-site vacancies with long-range order. Syntheses in non-acidified HT solutions produce rhombohedral K-jarosites which contain relatively large numbers of Fe-site vacancies with no long-range order. Increasing the [Fe]/[K] ratio, reaction temperature and reaction time in non-acidified solutions promotes the formation of monoclinic jarosites which contain Fe-site vacancies with short-range order. A structural model including details of the ordering of the Fe-site vacancies was obtained by refinement of single-crystal synchrotron data from one of the HT synthesis products; this model was used to refine synchrotron powder X-ray diffraction data from products synthesized at different reaction times, temperatures and [Fe]/[K] ratios. Thermal and chemical analyses are consistent with a model for non-stoichiometry in which domains of stoichiometric jarosite are intergrown with butlerite-like iron-deficient domains with a composition [Fe2(SO4)2(OH)2(H2O)4]. It was found that heterogeneous nucleation of monoclinic jarosite on Si disks is preceded by the formation of an oriented film of Maus's Salt, K5Fe3O(SO4)6·10H2O, as a precursor phase, and that this transforms topotactically into oriented jarosite, which contains butlerite-like layers parallel to the disk surface. Structural models for the transformation of Maus's Salt into jarosite are proposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basciano, L.C. and Peterson, R.C. (2007) Jarosite–hydronium jarosite solid-solution series with full iron site occupancy: mineralogy and crystal chemistry. American Mineralogist, 92, 14641473.CrossRefGoogle Scholar
Basciano, L.C. and Peterson, R.C. (2008) Crystal chemistry of the natrojarosite–jarosite and natrojarosite –hydronium jarosite solid-solution series: a synthetic study with full Fe site occupancy. American Mineralogist, 93, 853862.CrossRefGoogle Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Bergamaschi, A., Cervellino, A., Dinapoli, R., Gozzo, F., Henrich, B., Johnson, I., Kraft, P., Mozzanica, A., Schmitt, B. and Shi, X. (2010) The MYTHEN detector for X-ray powder diffraction experiments at the Swiss Light Source. Journal of Synchrotron Radiation, 17, 653658.CrossRefGoogle ScholarPubMed
Burns, R.G. (1988) Gossans on Mars. Pp. 713721. in: Proceedings of 18th Lunar and Planetary Science Conference (Ryder, G., editor). Lunar and Planetary Institute, Houston, Texas, USA.Google Scholar
Casas, J.M., Crisostomo, G. and Cifuentes, L. (2005) Speciation of the Fe(II)–Fe(III)–H2SO4–H2O system at 25 and 50ºC. Hydrometallurgy, 80, 254264.CrossRefGoogle Scholar
Casas, J.M., Paipa, C., Godoy, I. and Vargas, T. (2007) Solubility of sodium-jarosite and solution speciation in the system Fe(III)–Na–H2SO4–H2O at 70ºC. Journal of Geochemical Exploration, 92, 111119.CrossRefGoogle Scholar
Drouet, C. and Navrotsky, A. (2003) Synthesis, characterization and thermochemistry of K–Na– H3O jarosites. Geochimica et Cosmochimica Acta, 67, 20632076.CrossRefGoogle Scholar
Dutrizac, J.E. (1983) Factors affecting alkali jarosite precipitation. Metallurgical Transactions B, 14B, 531539.CrossRefGoogle Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. Pp. 405–452. in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (Alpers, C. N., Jambor, J. L. and Nordstrom, D. K., editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America, Washington DC and the Geochemical Society, S. Louis, Missouri, USA.Google Scholar
Dutrizac, J.E. and Kaiman, S. (1976) Synthesis and properties of jarosite-type compounds. The Canadian Mineralogist, 14, 151158.Google Scholar
Fanfani, I. and Zanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.Google Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Gasharova, B. (2000) Jarosite AFe3(SO4)2(OH)6: Kristallchemische Charakterisierung und aquatische Reaktionen. Unpublished PhD thesis, Ruprecht-Karls Universität, Heidelberg, Germany, 155 pp.Google Scholar
Gasharova, B., Göttlicher, J. and Becker, U. (2005) Dissolution at the surface of jarosite: an in situ AFM study. Chemical Geology, 215, 499516.CrossRefGoogle Scholar
Giacovazzo, C., Scordari, F. and Menchetti, S. (1975) Hydrous potassium and ferric iron sulphate (Maus’s Salt). Acta Crystallographica, B31, 21712173.CrossRefGoogle Scholar
Grey, I.E., Scarlett, N.V.Y., Bordet, P. and Brand, H.E.A. (2011) Jarosite–butlerite intergrowths in non-stoichiometric jarosites: crystal chemistry of monoclinic natrojarosite–hydronium jarosite phases. Mineralogical Magazine, 75, 27752791.CrossRefGoogle Scholar
Grohol, D., Nocera, D.N. and Papoutsakis, D. (2003) Magnetism of pure iron jarosites. Physical Review B, 67, http://dx.doi.org/10.1103/PhysRevB.67.064401.CrossRefGoogle Scholar
Härtig, C., Brand, P. and Bohmhammel, K. (1990) Zum Mechanismus der Alunit- und Jarositfällung. Neue Hütte, 35, 205209.Google Scholar
Jambor, J.L. (1999) Nomenclature for the alunite supergroup. The Canadian Mineralogist, 37, 13231341.Google Scholar
Kubisz, J. (1970) Studies on synthetic alkali –hydronium jarosites. I. Synthesis of jarosite and natrojarosite. Mineralogia Polonica, 1, 4757.Google Scholar
Kubisz, J. (1971) Studies on synthetic alkali –hydronium jarosites. II. Thermal investigations. Mineralogia Polonica, 2, 5159.Google Scholar
Majzlan, J. (2010) Advances and gaps in the knowledge of thermodynamics and crystallography of acid mine drainage sulphate minerals. Chimia, 64, 699704.CrossRefGoogle Scholar
Majzlan, J. and Myneni, S.C.B. (2005) Speciation of iron and sulphate in acid waters: Aqueous clusters to mineral precipitates. Environmental Science and Technology, 39, 188194.CrossRefGoogle ScholarPubMed
Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.J., Navrotsky, A., Burns, P.C., Crawford, M.K. and Amos, T.G. (2004) Thermodynamic properties, lowtemperature heat capacity anomalies, and singlecrystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6 . Physics and Chemistry of Minerals, 31, 518531.CrossRefGoogle Scholar
Majzlan, J., Navrotsky, A., McCleskey, R.B. and Alpers, C.N. (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase and Fe2(SO4)3(H2O)5 . European Journal of Mineralogy, 18, 175186.CrossRefGoogle Scholar
Margulis, E.V., Getskin, L.S., Zapuskalova, N.A. and Beisekeeva, L.I. (1976) Hydrolytic precipitation of iron in the system Fe2(SO4)3–KOH–H2O system. Russian Journal of Inorganic Chemistry, 21, 996999.Google Scholar
Martin, A. and Feltz, A. (1989) Untersuchungen zur Jarositbildung. Zeitschrift fur Anorganische und Allgemie Chemie, 575, 115120.CrossRefGoogle Scholar
Matijevic, E., Sapiezko, R.S. and Melville, J.B. (1975) Ferric hydrous oxide sols. I. Monodispersed basic iron(III) sulphate particles. Journal of Colloid and Interface Science, 50, 567581.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Nielsen, U.G., Majzlan, J. and Grey, C.P. (2008) Determination and quantification of the local environments in stoichiometric and defect jarosite by solid-state 2H NMR spectroscopy. Chemistry of Materials, 20, 22342241.CrossRefGoogle Scholar
Petřícˇek, V. and Dušek, M. (2000): JANA2000, a Crystallographic Computing System. Institute of Physics, Academy of Sciences of the Czech Republic, Prague.Google Scholar
Posnjak, E. and Merwin, H.E. (1922) The system Fe2O3–SO3–H2O. Journal of the American Chemical Society, 44, 19651994.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990) FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Rowles, M.R. (2010) CONVAS2: a program for the merging of diffraction data. Powder Diffraction, 25, 297301.CrossRefGoogle Scholar
Sapiezko, R.S., Patel, R.C. and Matijevic, E. (1977) Ferric hydrous oxide sols. 2. Thermodynamics of aqueous hydroxo and sulfato ferric complexes. Journal of Physical Chemistry, 81, 10611066.CrossRefGoogle Scholar
Savage, K.S., Bird, D.K. and O’Day, P.A. (2005) Arsenic speciation in synthetic jarosite. Chemical Geology, 215, 473498.CrossRefGoogle Scholar
Scarlett, N.V.Y., Grey, I.E. and Brand, H.E.A. (2010) Ordering of iron vacancies in monoclinic jarosites. American Mineralogist, 95, 15901593.CrossRefGoogle Scholar
Scordari, F., Vurro, F. and Menchetti, S. (1975) The metavoltine problem: relationships between metavolyine and Maus’ Salt. Tschermaks Mineralogische und Petrographische Mitteilungen, 22, 8897.CrossRefGoogle Scholar
Scordari, F., Stasi, F., Schingaro, E. and Communale, G. (1994) Analysi s of the (Na1 / 3(H2O)2 / 3)12[NaFe3+ 3 O(SO4)6(H2O)3] compound: crystal structure, solid-state transformation and its relationship to some analogues. Zeitschrift für Kristallographie, 209, 4348.Google Scholar
Stephens, P.W. (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32, 281289.CrossRefGoogle Scholar
Steyl, J.D.T. (2009) Kinetic modelling of chemical processes in acid solution at t 4 200ºC. (i) thermodynamics and speciation in H2SO4–Metal(II) SO4–H2O system. Pp. 401443. in: Hydrometallurgy Conference 2009. The Southern African Institute of Mining and Metallurgy, Johannesburg.Google Scholar
Ten Wold, P.R. and Frenkel, D. (1999) Homogeneous nucleation and the Ostwald step rule. Physical Chemistry, Chemical Physics, 1, 21912196.CrossRefGoogle Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherer synchrotron X-ray data from Al2O3 . Journal of Applied Crystallography, 20, 7983.CrossRefGoogle Scholar
Wallwork, K.S., Kennedy, B.J. and Wang, D. (2007) The high resolution powder diffraction beamline for the Australian Synchrotron. AIP Conference Proceedings, 879, 879882.CrossRefGoogle Scholar
Wills, A.S., Harrison, A., Ritter, C. and Smith, R.I. (2000) Magnetic properties of pure and diamagnetically doped jarosites: model kagomé antiferromagnets with variable coverage of the magnetic lattice. Physical Review B, 61, 61566169.CrossRefGoogle Scholar