Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T00:04:20.608Z Has data issue: false hasContentIssue false

Compositional relations in Li-micas from S.W. England and France: an ion- and electron-microprobe study

Published online by Cambridge University Press:  05 July 2018

C. M. B. Henderson
Affiliation:
Department of Geology, The University, Manchester M13 9PL
Joanna S. Martin
Affiliation:
Department of Geology, The University, Manchester M13 9PL
R. A. Mason
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ

Abstract

A combination of ion-microprobe (for Li) and electron-microprobe (for other major elements including F) methods has been used to analyse Li-rich micas from the S.W. England batholith (mainly the St Austell granite) and the Massif Central, France. Rocks showing various degrees of hydrothermal alteration were studied in order to separate the original compositional trends from alteration trends. The original compositional trend is essentially one of increasing Li with increasing degree of evolution. The main atomic substitution in the original micas is 3Li substituting for A1 and 2 vacancies in octahedral sites; substitution of Li for R2+ (Fe, Mn, Mg) in octahedral co-ordination is generally subordinate. Alteration trends involve a loss of Li, Fe, F, Rb and Cs, and a gain in A1. The effects of volatile elements on phase relations of granites are reviewed and it is concluded that the original Li-micas were primary, i.e. crystallized from the melt. It is suggested that the late-magmatic stage passed transitionally into the hydrothermal stage leading inevitably to subsolidus recrystallization (autometasomatism) of the primary minerals, so introducing further textural and mineralogical complexities to the rocks.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland, Canada A1B 3X5.

References

Alderton, D. H. M. and Rankin, A. H. (1983) The character and evolution of hydrothermal fluids associated with the kaolinized St Austell granite, S.W. England. J. Geol. Soc. London 140, 297-309.CrossRefGoogle Scholar
Al-Saleh, S., Fuge, R. and Rea, W. J. (1977) The geochemistry of some biotites from the Dartmoor granite. Proc. Ussher Soc. 4, 37-48.Google Scholar
Aubert, G. ,(1969) Les coupoles granitiques de Montebras et d'Echassières et la genèse de leurs minéralisations. Mem. B.R.G.M. (France) 46, 332 pp.Google Scholar
Banner, A. E. and Stimpson, B. F. (1974) A combined ion probe/spark source analysis system. Vacuum 24, 511-7.CrossRefGoogle Scholar
Burnham, C. W. and Nevkasil, H. (1986) Equilibrium properties of granite magma melts. Am. Mineral. 71, 239-63.Google Scholar
Černý, P. and Burt, D. M. (1984) Paragenesis, crystallochemical characteristics and geochemical evolution of micas in granite pegmatites. In Micas (Bailey, S. W., ed.). Revs. in Mineralogy 13, 257-97.CrossRefGoogle Scholar
Charoy, B. (1981) Post-magmatic processes in southwest England and Brittany. Proc. Ussher Soc. 5, 101-15.Google Scholar
Chaudhry, M. N. and Howie, R. A. (1973a) Lithium-aluminium micas from the Meldon aplite, Devonshire, England. Mineral. Mag. 39, 289-96.CrossRefGoogle Scholar
Chaudhry, M. N. and Howie, R. A. (1973b) Muscovite (‘Gilbertite’) from the Meldon aplite. Proc. Ussher Soc. 2, 480-1.Google Scholar
Chorlton, L. B. and Martin, R. F. (1978) The effect of boron on the granite solidus. Can. Mineral. 16, 239-44.Google Scholar
Christiansen, E. H., Bikun, J. V., Sheriden, M. F. and Burt, D. M. (1984) Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. Am. Mineral. 69, 223-36.Google Scholar
Dangerfield, J., Hawkes, J. R. and Hunt, E. C. (1980) The distribution of lithium in the St Austell granite. Proc. Ussher Soc. 5, 76-80.Google Scholar
Exley, C. S. (1959) Magmatic differentiation and alteration in the St Austell granite. Q. J. Geol. Soc. London 14, 197-230.Google Scholar
Exley, C. S. and Stone, M. (1982) Hercynian igneous rocks. In Igneous rocks of the British Isles (Sutherland, D. S., ed.). J. Wiley & Sons, pp. 287320. Google Scholar
Foster, Margaret D. (1960) Interpretation of the composition of lithium micas. U.S. Geol. Surv. Prof. Paper 354-E, 115-47.Google Scholar
Hall, A. (1971) Greisenisation in the granite of Cligga Head, Cornwall. Proc. Geol. Assoc. London 82, 209-30.CrossRefGoogle Scholar
Hall, A. (1988) The distribution of ammonium in granites from south-west England. J. Geol. Soc. London 145, 37-41.CrossRefGoogle Scholar
Hawthorne, F. C. and Černý, P. (1982) The mica group. In Granitic pegmatites in Science and Industry (Černý, P., ed.). Mineral. Soc. Canada, Short Course Handbook 8, 63-98.Google Scholar
Henderson, C. M. B. and Manning, D. A. C. (1984) The effect of Cs on phase relations in the granite system: stability of pollucite. Progr. Expt. Petr. (NERC) 6, 41-2.Google Scholar
Hill, P. I. and Manning, D. A. C. (1987) Multiple intrusions and pervasive hydrothermal alteration in the St. Austell granite, Cornwall. Proc. Ussher Soc. 6, 447-53.Google Scholar
Jackson, N. J., Moore, J. McM. and Rankin, A. H. (1977) Fluid inclusions and mineralization at Cligga Head, Cornwall, England. J. Geol. Soc. London 134, 343-9.CrossRefGoogle Scholar
Jones, A. P. and Smith, J. V. (1984) Ion probe analysis of H, Li, B, F and Ba in micas with additional data for metamorphic amphibole, scapolite and pyroxene. Neues Jahrb. Mineral. Mh. 228-40.Google Scholar
Levillain, C. (1980) Etude statistiques des variations de la teneur en OH et F dans les micas. Tschermaks Mineral. Petrogr. Mitt. 27, 209-33.CrossRefGoogle Scholar
Levillain, C. (1981) Présence d'un polytype 2M, dans les 1épidolites du granite de Beauvoir (Massif Central, France). Bull. Minéral. 104, 690-3.CrossRefGoogle Scholar
London, D. (1987) Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochim. Cosmochim. Acta 51, 403-20.CrossRefGoogle Scholar
Long, J. V. P., Astill, D. M., Coles, J. N., Reed, S. J. B. and Charnley, N. R. (1980) A computer based recording system for high mass resolution ion-probe analysis. In X-ray Optics and Microanalysis (Beaman, D. R., Ogilvie, R. E. and Wittry, D. B., eds.). Pendell Publishing Co., Midland, Michigan, pp. 316-21.Google Scholar
Manning, D. A. C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol. 76, 206-15.CrossRefGoogle Scholar
Manning, D. A. C. (1982) An experimental study of the effects of fluorine on the crystallization of granitic melts. In Metallization Associated with Acid Magmatism (Evans, A. M., ed.), pp. 191203.Google Scholar
Manning, D. A. C. (1988) Late-stage granitic rocks and mineralization in southwest England and southeast Asia. In Recent advances in the geology of granite-related mineral deposits. (Taylor, R. P. and Strong, D. F., eds.). Canad. Inst. Mining Metall. 39, 80-5.Google Scholar
Manning, D. A. C. and Exley, C. S. (1984) The origins of late-stage rocks in the St Austell granite—a re-interpretation. J. Geol. Soc. London 141, 581-91.CrossRefGoogle Scholar
Manning, D. A. C. and Henderson, C. M. B. (1981) The effect of addition of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Progr. Expt. Petrol. (NERC) 5, 16-23.Google Scholar
Manning, D. A. C. and Hill, P. I. (In press) The petrogenetic and metallogenetic significance of topaz granite from the S.W. England orefield. Ore-bearing granite systems: petrogenesis and mineralizing processes, Geol. Soc. Am. Special Paper (Stein, H. J. and Hannah, J. L., eds.).Google Scholar
Manning, D. A. C., Martin, J. S., Pichavant, M. and Henderson, C. M. B. (1984) The effect of F, B and Li on melt structures in the granite system: different mechanisms. Progr. Expt. Petrol. (NERC) 6, 36-41.Google Scholar
Martin, Joanna S. (1983) An experimental and field study of late-stage Li-rich granitic rocks. Ph.D. thesis, University of Manchester.Google Scholar
Martin, Joanna S. and Henderson, C. M. B. (1984) An experimental study of the effects of small amounts of lithium on the granite system. Progr. Expt. Petrol. (NERC) 6, 30-5.Google Scholar
Monier, G. and Robert, J-L. (1986) Muscovite solid solutions in the system K2O-MgO-FeO-Al2O3-SiO2-H2O: an experimental study at 2 kbar PH20 and comparison with natural Li-free white micas. Mineral. Mag. 50, 257-66.CrossRefGoogle Scholar
Munoz, J. L. (1971) Hydrothermal stability relations of synthetic lepidolite. Am. Mineral. 56, 2069-86.Google Scholar
Munoz, J. L. (1984) F-OH and C1-OH exchange in micas with applications to hydrothermal mineral deposits. In Micas (Bailey, S. W., ed.). Revs. in Mineralogy 13, 469-93.CrossRefGoogle Scholar
Pichavant, M. (1987) Effects of B and H2O on liquidus phase relations in the haplogranite system at I kbar. Am. Mineral. 72, 1056-70.Google Scholar
Rieder, M. (1970) Chemical composition and physical properties of lithium-iron micas from the Krusne hory Mts. (Erzgebirge). Part A: Chemical composition. Contrib. Mineral. Petrol. 27, 131-58.CrossRefGoogle Scholar
Rieder, M. (1971) Stability and physical properties of synthetic lithium-iron micas. Am. Mineral. 56, 256-80.Google Scholar
Rosenberg, P. E. and Foit, F. F. (1977) Fe2+-F avoidance in silicates. Geochim. Cosmochirn. Acta 41, 345-6.CrossRefGoogle Scholar
Stone, M. (1975) Structure and petrology of the Tregonning-Godolphin granite, Cornwall. Proc. Geol. Assoc. London 86, 155-70.CrossRefGoogle Scholar
Stone, M. (1984) Textural evolution of lithium mica granites in the Cornubian batholith. Ibid. 95, 29-41.CrossRefGoogle Scholar
Stone, M., Exley, C. S. and George, M. C. (1988) Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag. 52, 175-92.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Mem. Geol. Soc. Am. 74.Google Scholar
Webster, J. D., Holloway, J. R. and Hervig, R. L. (1987) Phase equilibria of a Be, U and F-enriched vitrophyre from Spor Mountain, Utah. Geochim. Cosmochim. A cta 51, 389-402.CrossRefGoogle Scholar
Weidner, J. R. and Martin, R. F. (1987) Phase equilibria of a fluorine-rich leucogranite from the St Austell pluton, Cornwall. Ibid. 51, 1591-7.CrossRefGoogle Scholar
Wilson, G. C. (1980) Ion microprobe techniques, with applications to analysis of Li in Cornish granites. Ph.D. thesis, Univ. of Cambridge (unpubl.), 245 pp.Google Scholar
Wilson, G. C. and Long, J. V. P. (1983) The distribution of lithium in some Cornish minerals: ion microprobe measurements. Mineral. Mag. 47, 191-9.CrossRefGoogle Scholar
Wyllie, P. J. and Tuttle, O. F. (1964) Experimental investigation of silicate systems containing two volatile components. Part 3: The effects of SO3, P2O5, HCl and Li2O in addition to H2O on the melting temperature of albite and granite. Am. J. Sci. 262, 930-9.CrossRefGoogle Scholar