Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T07:48:49.068Z Has data issue: false hasContentIssue false

Boron and lithium isotopic compositions as provenance indicators of Cu-bearing tourmalines

Published online by Cambridge University Press:  05 July 2018

B. M. Shabaga
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
M. Fayek
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

Abstract

The Li and B isotopic compositions of gem-quality Cu-bearing tourmalines were used (1) to distinguish among Paraiba tourmalines from Brazil and Cu-bearing tourmalines from Nigeria and Mozambique; and (2) to identify the likely source of Li and B for these gem-quality tourmalines. The δ11B values of tourmaline from Paraiba, Brazil, range from –42.4‰ to –32.9‰, whereas the δ11B values of Cu-bearing tourmaline from Nigeria and Mozambique range from –30.5‰ to –22.7‰ and –20.8‰ to –19.1‰ respectively. Tourmalines from each locality have relatively homogeneous δ11B values and display no overlap. There is slight overlap between δ7Li values of Paraiba tourmaline (+24.5‰ to +32.9‰) and Cu-bearing tourmaline from Nigeria (+32.4‰ to +35.4‰), and δ7Li values of Cu-bearing tourmaline from Nigeria and Mozambique (+31.5‰ to +46.8‰). Nevertheless, Cu-bearing tourmalines from each locality can be fingerprinted using a combination of their δ11B and δ7Li values. The very small δ11B values are consistent with a non-marine evaporite source, and are among the smallest reported for magmatic systems, expanding the global range of B isotopicc omposition for tourmaline by 12‰. The corresponding large δ7Li values are among the largest reported, although they are less diagnostic of the source of the Li. The large δ7Li values in conjunction with the small δ11B values suggest a non-marine evaporite or brine as a source for Li and B, either as constituent(s) of the magma source region or, by assimilation during magma ascent. The large range in δ11B and δ7Li values suggests that B and Li isotope fractionation occurred during magmatic degassing and late-stage magmatic-hydrothermal evolution of the granite-pegmatite system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abduriyim, A., Kitawaki, H., Furuya, M. and Schwarz, D. (2006) ‘Paraiba’-type copper-bearing tourmaline from Brazil, Nigeria, and Mozambique: chemical fingerprinting by LA-ICP-MS. Gems and Gernology, 42, 421.CrossRefGoogle Scholar
Agrosi, G., Bosi, F., Lucchesi, S., Melchiorre, G. and Scandale, E. (2006) Mn-tourmaline crystals from island of Elba (Italy) growth history and growth marks. American Mineralogist, 91, 944952.CrossRefGoogle Scholar
Andreozzi, G.B., Bosi, F. and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist, 93, 658666.CrossRefGoogle Scholar
Aurisicchio, C., Ottolini, L. and Pezzotta, F. (1999) Electron- and ion-microprobe analyses, and genetic inferences of tourmalines of the foitite-schorl solid solution. European Journal of Mineralogy, 11, 217225.CrossRefGoogle Scholar
Barth, S. (1993) Boron isotope variations in nature: a synthesis. Geologische Rundschau, 82, 640651.CrossRefGoogle Scholar
Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S. and Guidotti, C.V. (1999) Linking structure and chemistry in the schorl-dravite series. American Mineralogist, 84, 922928.CrossRefGoogle Scholar
Bosi, F. (2008) Disordering of Fe2+ over octahedrally coordinated sites of tourmaline. American Mineralogist, 93, 16471653.CrossRefGoogle Scholar
Bosi, F. and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal of Mineralogy, 16, 335344.CrossRefGoogle Scholar
Bosi, F., Lucchesi, S. and Reznitskii, L. (2004) Crystal chemistry of the dravite-chromdravite series. European Journal of Mineralogy, 16, 345352.CrossRefGoogle Scholar
Bosi, F., Agrose, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005 a) Mn-tourmaline from island of Elba (Italy) crystal chemistry. American Mineralogist, 90, 16611668.CrossRefGoogle Scholar
Bosi, F., Andreozzi, G.B., Federico, M., Graziani, G. and Lucchesi, S. (2005 b) Crystal chemistry of the elbaite-schorl series. American Mineralogist, 90, 17841792.CrossRefGoogle Scholar
Bottomley, D.J., Chan, L.H., Katz, A., Starinsky, A. and Clark, I.D. (2003) Lithium isotope geochemistry and origin of Canadian Shield brines. Ground Water, 41, 847856.CrossRefGoogle ScholarPubMed
Breeding, C.M., Rockwell, K. and Laurs, B.M. (2007) Gem News International: New Cu-bearing tourmaline from Nigeria. Gems and Gemology, 43, 384385.Google Scholar
Bryant, C.J., Chappell, B.W., Bennett, V.C. and McCulloch, M.T. (2003) Li isotopic variations in eastern Australia granites. Geochimica et Cosmochimica Ada, 67, A47.Google Scholar
Burns, P.C., Macdonald, D.J. and Hawthorne, F.C. (1994) The crystal-chemistry of manganese-bearing elbaite. The Canadian Mineralogist, 32, 3141.Google Scholar
Cámara, F., Ottolini, L. and Hawthorne, F.C. (2002) Crystal chemistry of three tourmalines by SREF, EMPA, and SIMS. American Mineralogist, 87, 14371442.CrossRefGoogle Scholar
Cathelineau, M., Boiron, M.C., Holliger, P. and Poty, B. (1990) Metallogenesis of the French part of the Variscan orogen. Part II: Time-space relationships between U, Au, and Sn-W ore deposition and geodynamic events-mineralogical and U-Pb data. Tectonophysics, 177, 5579.CrossRefGoogle Scholar
Chaussidon, M. and Albarède, F. (1992) Secular boron isotope variations in the continental crust: An ion microprobe study. Earth and Planetary Science Letters, 108, 229241.CrossRefGoogle Scholar
Chaussidon, M. and Appel, P.W.U. (1997) Boron isotopic composition of tourmalines from the 3.8-Ga-old Isua supracrustals, West Greenland: implications on the δ11B value of early Archean seawater. Chemical Geology, 136, 171180.CrossRefGoogle Scholar
Dingwell, D.B., Pichavant, M. and Holtz, F. (1996) Experimental studies of boron in granitic melts. Pp. 331379 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Robertson, J.D., Cross, L.M., Guidotti, C.V. and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mossbauer study of Fe valence and site occupancy. American Mineralogist, 83, 848864.CrossRefGoogle Scholar
Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J.D. and Cross, L.R. (1999) Stable isotope and crystal chemistry of tourmaline across pegmatite-country rock boundaries at Black Mountain and Mount Mica, southwestern Maine, U.S.A. European Journal of Mineralogy, 11, 281294.CrossRefGoogle Scholar
Ertl, A. and Hughes, J.M. (2002) The crystal structure of an aluminum-rich schorl overgrown by boron-rich olenite from Koralpe, Styria, Austria. Mineralogy and Petrology, 75, 12, 69-78.Google Scholar
Ertl, A., Hughes, J.M., Brandstätter, F., Dyar, M.D. and Prasad, P.S.R. (2003 a) Disordered Mg-bearing olenite from a granitic pegmatite from Goslarn, Austria: A chemical, structural, and infrared spectroscopic study. The Canadian Mineralogist, 41, 13631370.CrossRefGoogle Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Rossman, G.R., London, D. and Fritz, E.A. (2003 b) Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. American Mineralogist, 88, 13691376.CrossRefGoogle Scholar
Ertl, A., Pertlik, F., Dyar, M.D., Prowatke, S., Hughes, J.M., Ludwig, T. and Bernhardt, H-J. (2004) Fe-rich olenite with tetrahedrally coordinated Fe3+ from Eibenstein, Austria: Structural, chemical, and Mossbauer data. The Canadian Mineralogist, 42, 10571063.CrossRefGoogle Scholar
Ertl, A., Rossman, G.R., Hughes, J.M., Prowatke, S. and Ludwig, T. (2005) Mn-bearing ‘oxy-rossmanite’ with tetrahedrally coordinated Al and B from Austria: Structure, chemistry, and infrared and optical spectroscopic study. American Mineralogist, 90, 481487.CrossRefGoogle Scholar
Ertl, A., Tillmanns, E., Ntaflos, T., Francis, C., Giester, G., Koerner, W., Hughes, J.M., Lengauer, C. and Prem, M. (2008) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressure-temperature conditions of formation. European Journal of Mineralogy, 20, 881888.CrossRefGoogle Scholar
Foustoukos, D.I., James, H.R., Berndt, M.E. and Seyfried, W.E. Jr. (2004) Lithium isotope systematics of hydrothermal vent fluids at the Main Endeavour Field, Northern Juan de Fuca Ridge. Chemical Geology, 212, 1726.CrossRefGoogle Scholar
Francis, C.A., Dyar, M.D., Williams, M.L. and Hughes, J.M. (1999) The occurrence and crystal structure of foitite from a tungsten-bearing vein at Copper Mountain, Taos County, New Mexico. The Canadian Mineralogist, 37, 14311438.Google Scholar
Furuya, M. and Furuya, M. (2007) Paraiba Tourmaline-Electric Blue Brilliance Burnt into our Minds. Japan Germany Gemmological Laboratory, Kofu, Japan, 24 pp.Google Scholar
Grice, J.D. and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: the correct formula. Neues Jahrbuch für Mineralogie Abhandlungen, 165, 245266.Google Scholar
Grice, J.D., Ercit, T.S. and Hawthorne, F.C. (1993) Povondraite, a redefinition of the tourmaline ferridravite. American Mineralogist, 78, 433436.Google Scholar
Halama, R., McDonough, W.F., Rudnick, R.L., Keller, J. and Klaudius, J. (2007) The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth and Planetary Science Letters, 254, 7789.CrossRefGoogle Scholar
Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.CrossRefGoogle Scholar
Hawthorne, F.C. and Henry, D.J. (1999) Classification of the minerals of the tourmaline group. European Journal of Mineralogy, 11, 201215.CrossRefGoogle Scholar
Hawthorne, F.C., Macdonald, D.J. and Burns, P.C. (1993) Reassignment of cation site occupancies in tourmaline: Al-Mg disorder in the crystal structure of dravite. American Mineralogist, 78, 265270.Google Scholar
Henry, D.J. and Dutrow, B.L. (1992) Tourmaline in low-grade clastic metasedimentary rock: an example of the petrogenetic potential of tourmaline. Contributions to Mineralogy and Petrology, 112, 203218.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Pp. 503558 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Holliger, P. and Cathelineau, M. (1988) In situ U-Pb age determination by secondary ion mass spectrometry. Chemical Geology, 70, pp. 173.CrossRefGoogle Scholar
Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Shearer, C.K., Yates, M.G. and Guidotti, C.V. (2000) Tetrahedrally coordinated boron in a tourmaline: boron-rich olenite from Stoffhiitte, Koralpe, Austria. The Canadian Mineralogist, 38, 861868.CrossRefGoogle Scholar
Hughes, J.M., Ertl, A., Dyar, M.D., Grew, E.S., Wiedenbeck, M. and Brandstätter, F. (2004) Structural and chemical response to varying [4]B content in zoned Fe-bearing olenite from Koralpe, Austria. American Mineralogist, 89, 447454.CrossRefGoogle Scholar
Jiang, S.Y. (1998) Stable and radiogenic isotope studies of tourmaline: An overview. Journal of the Czech Geological Society, 43, 7590.Google Scholar
Jiang, S.Y. (2006) Reply to ‘Re-examination of the boron isotopic composition of tourmaline from the Lavicky granite, Czech Republic, by secondary ion mass spectrometry: back to normal’ by Marschall, H.R. and T. Ludwig: Critical comment on ‘Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic’. Geochemical Journal, 40, 639641.CrossRefGoogle Scholar
Jiang, S.Y. and Palmer, M.R. (1998) Boron isotopic systematics of tourmaline from granites and pegmatites: A synthesis. European Journal of Mineralogy, 10, 12531265.CrossRefGoogle Scholar
Jiang, S.Y., Palmer, M.R., Peng, Q.M. and Yang, J.H. (1997) Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China. Chemical Geology, 135, 189211.CrossRefGoogle Scholar
Jiang, S.Y., Palmer, M.R., Slack, J.F. and Anderson, D. (2000) Chemical and boron isotopic compositions of tourmaline from massive sulphide deposits and tourmalinites in the Mesoproterozoic Belt and Purcell supergroups, Southeastern British Columbia and Northwestern Montana. Pp. 336354 in: The Geochemical Environment of the Sullivan Pb-Zn-Ag Deposit, British Columbia (Lydon, J.W., Höy, T., Slack, J.F. and Knapp, M.E., editors). Special Publications, 1, Geological Association of Canada Mineral Deposits Division, St John's, Canada.Google Scholar
Jiang, S.Y., Yang, J.H., Noväk, M. and Selway, J. (2003) Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic. Geochemical Journal, 37, 545556.CrossRefGoogle Scholar
Kakihana, H., Kotaka, M., Shohei, S., Nomura, M. and Okamoto, N. (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of the Chemical Society of Japan, 50, 158163.CrossRefGoogle Scholar
Kasemann, S.A., Jeffcoate, A.B. and Elliott, T. (2005) Lithium isotope composition of basalt glass reference material. Analytical Chemistry, 77, 52515257.CrossRefGoogle ScholarPubMed
Koivula, J.I. and Kammerling, R.C. (1989) Gem News: Unusual tourmalines from Brazil. Gems and Gemology, 25, 181182.Google Scholar
Kotaka, M. (1973) Chromatographic separation of boron and nitrogen isotopes using pure water as eluent. PhD thesis, Tokyo Institute of Technology, 163 pp.Google Scholar
Laurs, B.M., Zwaan, J.C., Breeding, C.M., Simmons, W.B., Beaton, D., Rijsdijk, K.F., Befi, R. and Falster, A.U. (2008) Copper-bearing (Paraiba-type) tourmaline from Mozambique. Gems and Gemology, 44, 430.CrossRefGoogle Scholar
Leeman, W.P. and Sisson, V.B. (1996) Geochemistry of boron and its implications for crustal and mantle processes. Pp. 645708 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Liebscher, A., Meixner, A., Romer, R.L. and Heinrich, W. (2007) Experimental calibration of the vapour-liquid phase relations and lithium isotope fractionation in the system H2O-LiCl at 400. Geofluids, 7, 17.CrossRefGoogle Scholar
London, D. (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist, 71, 376395.Google Scholar
London, D., Morgan, G.B. and Wolf, M.B. (2002) Boron in granitic rocks and their contact aureoles. Pp. 299330 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Lundstrom, C.C., Chaussidon, M. and Kelemen, P. (2001) A Li isotope profile in a dunite to lherzolite transect within the Trinity Ophiolite: evidence for isotopie fractionation by diffusion. Transactions - American Geophysical Union, 82, 991.Google Scholar
Lussier, A.J., Herwig, S., Abdu, Y., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K. and Kroeker, S. (2008 a) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS, NMR and Mossbauer spectroscopy. Mineralogical Magazine, 72, 747761.CrossRefGoogle Scholar
Lussier, A.J., Herwig, S., Abdu, Y., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K. and Kroeker, S. (2008 b) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: II. Zoning and crystal growth. Mineralogical Magazine, 72, 9991010.CrossRefGoogle Scholar
Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K. and Kroeker, S. (2009) The occurrence of tetrahedrally coordinated Al and B in tourmaline: An 11B and 27Al MAS NMR study. American Mineralogist, 94, 785792.CrossRefGoogle Scholar
MacDonald, D.J. and Hawthorne, F.C. (1995) Cu-bearing tourmaline from Paraiba, Brazil. Acta Crystallographica C, 51, 555557.CrossRefGoogle Scholar
Magna, T., Wiechert, U., Grove, T.L. and Halliday, A.N. (2006) Lithium isotope fractionation in the southern Cascadia subduction zone. Earth and Planetary Science Letters, 250, 428443.CrossRefGoogle Scholar
Maloney, J.S., Nabelek, P.I., Sirbescu, M.L.C. and Halama, R. (2008) Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego Country pegmatites, California, USA. European Journal of Mineralogy, 20, 905916.CrossRefGoogle Scholar
Marschall, H.R. and Ludwig, T. (2006) Re-examination of the boron isotopic composition of tourmaline from the Lavicky granite, Czech Republic, by secondary ion mass spectrometry: back to normal. Critical comment on “Chemical and boron isotopic compositions of tourmaline from the Lavicky leucogranite, Czech Republic” by Jiang, S.-Y. et al., Geochemical Journal, 37, 545556, 2003. Geochemical Journal, 40, 631–368.Google Scholar
Marschall, H.R., Ertl, A., Hughes, J.M. and McCammon, C. (2004) Metamorphic Na- and OH-rich disordered dravite with tetrahedral boron associated with omphacite, from Syros, Greece: chemistry and structure. European Journal of Mineralogy, 16, 817823.CrossRefGoogle Scholar
Morgan, G.B. and London, D. (1989) Experimental reactions of amphibolites with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. Contributions to Mineralogy and Petrology, 102, 281297.CrossRefGoogle Scholar
Morgan, G.B. and London, D. (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contributions to Mineralogy and Petrology, 136, 310330.CrossRefGoogle Scholar
Moriguti, T. and Nakamura, E. (1998) High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chemical Geology, 145, 91104.CrossRefGoogle Scholar
Nabelek, P.I. (2007) A kinetic model for crystallization of granitic pegmatites at very low temperatures. 6thButton Symposium. 150151.Google Scholar
Nakano, T. and Nakamura, E. (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors, 127, 233252.CrossRefGoogle Scholar
Neiva, A.M.R., Silva, M., Manuela, V.G., Gomes, M.E. and Elisa, P. (2007) Crystal chemistry of tourmaline from Variscan granites, associated tin-tungsten- and gold deposits, and associated metamorphic and metasomatic rocks from northern Portugal. Neues Jahrbuch für Mineralogie Abhandlungen, 184, 4576.CrossRefGoogle Scholar
Novák, M. and Povondra, P. (1995) Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class. Mineralogy and Petrology, 55, 159176.CrossRefGoogle Scholar
Novák, M., Černý, P., Cooper, M., Hawthorne, F.C., Ottolini, L., Xu, Z. and Liang, J.J. (1999) Boron-bearing 2M 1 polylithionite and 2M 1 + 1M boromus-covite from an elbaite pegmatite at Řečice, western Moravia, Czech Republic. European Journal of Mineralogy, 11, 669678.CrossRefGoogle Scholar
Novák, M., Selway, J., Černý, P., Hawthorne, F.C. and Ottolini, L. (1999) Tourmaline of the elbaite-dravite series from an elbaite-subtype pegmatite at Blizná, southern Bohemia, Czech Republic. European Journal of Mineralogy, 11, 557568.CrossRefGoogle Scholar
Palmer, M.R. and Slack, J.F. (1989) Boron isotopie composition of tourmaline from massive sulfide deposits and tourmalinites. Contributions to Mineralogy and Petrology, 103, 434451.CrossRefGoogle Scholar
Palmer, M.R. and Swihart, G.H. (1996) Boron isotope geochemistry: An overview. Pp. 709744 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Palmer, M.R., Spivack, A.J. and Edmond, J.M. (1987) Temperature and pH controls over isotope fractionation during adsorption of boron on marine clay. Geochimica et Cosmochimica Acta, 51, 23192323.CrossRefGoogle Scholar
Palmer, M.R., London, D., Morgan, G.B. and Babb, H.A. (1992) Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapour: a temperature and pressure dependent isotopic system. Chemical Geology, (Isotope Geoscience Section), 101, 123130.CrossRefGoogle Scholar
Pieczka, A. (1999) Statistical interpretation of structural parameters of tourmalines; the ordering of ions in the octahedral sites. European Journal of Mineralogy, 11, 243251.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) Determination by X-ray microprobe of thickness and composition of thin surface-layers. Journal de Microscopie et de Spectroscopie Electroniques, 10, 279290.Google Scholar
Richter, F.M., Davis, A.M., Depaolo, D.J. and Watson, E.B. (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica Acta, 67, 39053923.CrossRefGoogle Scholar
Riciputi, L.R., Paterson, B.A. and Ripperdan, R.L. (1998) Measurement of light stable isotope ratios by SIMS: Matrix effects for oxygen, carbon, and sulfur isotopes in minerals. International Journal of Mass Spectrometry, 178, 81112.CrossRefGoogle Scholar
Schreyer, W., Wodara, U., Marler, B., Van Aken, P.A., Seifert, F. and Robert, J-L. (2002) Synthetic tourmaline (olenite) with excess boron replacing silicon in the tetrahedral site: I. Synthesis conditions, chemical and spectroscopie evidence. European Journal of Mineralogy, 12, 529541.CrossRefGoogle Scholar
Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569584.CrossRefGoogle Scholar
Selway, J.B., Novák, M., Černý, P. and Hawthorne, F.C. (2000 a) The Tanco pegmatite at Bernic Lake, Manitoba. XIII. Exocontact tourmaline. The Canadian Mineralogist, 38, 869976.CrossRefGoogle Scholar
Selway, J.B., Černý, P., Hawthorne, F.C. and Novák, M. (2000 b) The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. The Canadian Mineralogist, 38, 877891.CrossRefGoogle Scholar
Selway, J.B., Smeds, S-A., Černý, P. and Hawthorne, F.C. (2002) Compositional evolution of tourmaline in the petalite-subtype Nyköpingsgruvan pegmatites, Utö, Stockholm Archipelago, Sweden. GFF, 124, 93102.CrossRefGoogle Scholar
Shigley, J.E., Cook, B.C., Laurs, B.M. and Bernardes de Oliveirs, M. (2001) An update on ‘Paraiba’ tourmaline from Brazil. Gems and Gemology, 37, 260276.CrossRefGoogle Scholar
Sirbescu, M.C. and Nabelek, P.I. (2003 a) Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota – Evidence from fluid inclusions. Geochimica et Cosmochimica Acta, 67, 24432465.CrossRefGoogle Scholar
Sirbescu, M.C. and Nabelek, P.I. (2003 b) Crustal melts below 400°C. Geology, 31, 685688.CrossRefGoogle Scholar
Sirbescu, M.C., Hartwick, E.E. and Student, J.J. (2008) Rapid crystallization of the Animikie Red Ace Pegmatite, Florence Country, Northeastern Wisconsin: Inclusion microthermometry and conductive-cooling modeling. Contributions to Mineralogy and Petrology, 156, 289305.CrossRefGoogle Scholar
Slack, J.F. (1996) Tourmaline associations with hydrothermal ore deposits. Pp. 559643 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anovitz, L.M., editors). Reviews in Mineralogy, 33, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Smith, C.P., Bosshart, G. and Schwarz, D. (2001) Gem News International: Nigeria as a new source of copper-manganese-bearing tourmaline. Gems and Gemology, 37, 239240.Google Scholar
Smith, M.P. and Yardley, B.W.D. (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: An ion microprobe study. Geochimica et Cosmochimica Acta, 60, 14151427.CrossRefGoogle Scholar
Soares, D.R., Beurlen, H., Ferreira, A.C.M. and Da-Silva, M.R.R. (2007) Chemical composition of gahnite and degree of pegmatitic fractionation in the Borborema Pegmatic Province, northeastern Brazil. Anais da Academia Brasileira de Ciencias, 79, 395404.CrossRefGoogle Scholar
Sturchio, N.C. and Chan, L.H. (2003) Lithium isotope geochemistry of the Yellowstone hydrothermal system. Special Publication (Society of Economic Geologists (U. S.)), 10, 171180.Google Scholar
Swihart, G.H. and Moore, P.B. (1989) A reconnaissance of the boron isotopic composition of tourmaline. Geochimica et Cosmochimica Acta, 53, 911916.CrossRefGoogle Scholar
Swihart, G.H., Moore, P.B. and Callis, E.L. (1986) Boron isotopic composition of marine and non-marine evaporite borates. Geochimica et Cosmochimica Acta, 50, 12971301.CrossRefGoogle Scholar
Taylor, M.C., Cooper, M.A. and Hawthorne, F.C. (1995) Local charge-compensation in hydroxy-deficient uvite. The Canadian Mineralogist, 33, 12151221.Google Scholar
Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpé, C., Tomascak, P.B., Chappell, B.W. and Gao, S. (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Ada, 68, 41674178.CrossRefGoogle Scholar
Teng, F.Z., McDonough, W.F., Rudnick, R.L. and Walker, R.J. (2006) Diffusion-driven lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth and Planetary Science Letters, 243, 701710.CrossRefGoogle Scholar
Thomas, A.V., Bray, C.J. and Spooner, E.T.C. (1988) A discussion of the Jahns-Burnham proposal for the formation of zoned granitic pegmatites using solid-liquid-vapour inclusions from the Tanco Pegmatite, S.E. Manitoba, Canada. Transactions of the Royal Society of Edinburgh: Earth Science, 7, 299315.CrossRefGoogle Scholar
Thomas, R. and Klemm, W. (1997) Microthermometric study of silicate melt inclusions in Varisean granites from SE Germany: Volatile contents and entrapment conditions. Journal of Petrology, 38, 17531765.CrossRefGoogle Scholar
Thomas, R., Webster, J.D. and Heinrich, W. (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology, 139, 394401.CrossRefGoogle Scholar
Tomascak, P.B. (2004) Developments in the under-standing and application of lithium isotopes in the Earth and planetary sciences. Pp. 153195 in: Geochemistry of Non-Traditional Stable Isotopes (Johnson, C.M., Beard, B.L. and Albarède, F., editors). Reviews in Mineralogy and Geochemistry, 55, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Tomascak, P.B., Lynton, S.J., Walker, R.J. and Krogstad, E.J. (1995) Li isotope geochemistry of the Tin Mountain pegmatite, Black Hills, South Dakota. Pp. 151152 in: The Origin of Granites and Related Rocks. (Brown, M. and Piccoli, P.M., editors.), US Geological Survey Circular 1129.Google Scholar
Tomascak, P.B., Tera, F., Helz, R.T. and Walker, R.J. (1999 a) The absence of lithium isotope fraetionation during basalt differentiation; new measurements by multicollector sector ICP-MS. Geochimica et Cosmochimica Acta, 63, 907910.CrossRefGoogle Scholar
Tomascak, P.B., Carlson, R.W. and Shirey, S.B. (1999 b) Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chemical Geology, 158, 145154.CrossRefGoogle Scholar
Tomascak, P.B., Hemming, N.G. and Hemming, S.R. (2003) The lithium isotopic composition of waters of the Mono Basin, California. Geochimica et Cosmochimica Acta, 67, 601611.CrossRefGoogle Scholar
Tonarini, S., Dini, A., Pezzotta, F. and Leeman, W.P. (1998) Boron isotopic composition of zoned (schorlelabite) tourmalines, Mt. Capanna Li-Cs pegmatites, Elba (Italy). European Journal of Mineralogy, 10, 941952.CrossRefGoogle Scholar
Vocke, R.D., Beary, E.S. and Walker, R.J. (1990) High precision lithium isotope ratio measurement of samples from a variety of natural sources. V.M. Goldschmidt Conference Program Abstracts, 89.Google Scholar
Webber, K.L., Simmons, W.B., Falster, A.U. and Foord, E.E. (1999) Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego Country, California. American Mineralogist, 84, 708717.CrossRefGoogle Scholar
Wenger, M. and Armbruster, T. (1991) Crystal-chemistry of lithium-oxygen coordination and bonding. European Journal of Mineralogy, 3, 387399.CrossRefGoogle Scholar
Wentzell, C.Y. (2004) Lab Notes: Copper-bearing color-change tourmaline from Mozambique. Gems and Gemology, 40, 250251.Google Scholar
Wunder, B., Meixner, A., Romer, R.L., Feenstra, A., Shettler, G. and Heinrich, W. (2007) Lithium isotope fraetionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chemical Geology, 238, 277290.CrossRefGoogle Scholar