Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:48:44.297Z Has data issue: false hasContentIssue false

Bendadaite, a new iron arsenate mineral of the arthurite group

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch*
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
D. Atencio
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508–080, São Paulo, SP, Brazil
N. V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow Oblast, Russia
N. V. Zubkova
Affiliation:
M.V. Lomonosov Moscow State University, Faculty of Geology, Vorobjovy Gory, 119899 Moscow, Russia
L. A. D. Menezes Filho
Affiliation:
Instituto de Geociências, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 3127–901, Belo Horizonte, MG, Brazil
J. M. V. Coutinho
Affiliation:
Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508–080, São Paulo, SP, Brazil
W. D. Birch
Affiliation:
Department of Mineralogy, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
J. Schlüter
Affiliation:
Mineralogisches Museum, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
D. Pohl
Affiliation:
Mineralogisch-Petrographisches Institut, Universität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA
I. M. Steele
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago IL 60637, USA
G. Favreau
Affiliation:
421 av. Jean Monnet, F-13090 Aix-en-Provence, France
L. Nasdala
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
S. Möckel
Affiliation:
Neudorfer Str. 18, D-09629 Burkersdorf, Germany
G. Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria
D. Yu. Pushcharovsky
Affiliation:
M.V. Lomonosov Moscow State University, Faculty of Geology, Vorobjovy Gory, 119899 Moscow, Russia
*

Abstract

Bendadaite, ideally Fe2+Fe23+ (AsO4)2(OH)2·4H2O, is a new member of the arthurite group. It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada, central Portugal (type locality). Co-type locality is the granite pegmatite of Lavra do Almerindo (Almerindo mine), Linópolis, Divino das Laranjeiras county, Minas Gerais, Brazil. Further localities are the Veta Negra mine, Copiapó province, Chile; Oumlil-East, Bou Azzer district, Morocco; and Pira Inferida yard, Fenugu Sibiri mine, Gonnosfanadiga, Medio Campidano Province, Sardinia, Italy.

Type bendadaite occurs as blackish green to dark brownish tufts (<0.1 mm long) and flattened radiating aggregates, in intimate association with an intermediate member of the scorodite–mansfieldite series. It is monoclinic, space group P21/c, with a = 10.239(3) Å, b = 9.713(2) Å, c = 5.552(2) Å, β = 94.11(2)°, V = 550.7(2) Å3, Z = 2. Electron-microprobe analysis yielded (wt.%): CaO 0.04, MnO 0.03, CuO 0.06, ZnO 0.04, Fe2O3 (total) 43.92, Al2O3 1.15, SnO2 0.10, As2O5 43.27, P2O5 1.86, SO3 0.03. The empirical formula is (Fe2+0.52Fe3+0.320.16)Σ1.00(Fe3+1.89Al0.11)Σ2.00(As1.87P0.13)Σ2.00O8(OH)2.00·4H2O based on 2(As,P) and assuming ideal 8O, 2(OH), 4H2O and complete occupancy of the ferric iron site by Fe3+ and Al. Optically, bendadaite is biaxial, positive, 2Vest. = 85±4°, 2Vcalc. = 88°, with α 1.734(3), β 1.759(3), γ 1.787(4). Pleochroism is medium strong: X pale reddish brown, Y yellowish brown, Z dark yellowish brown; absorption Z > Y > X, optical dispersion weak, r > v. Optical axis plane is parallel to (010), with X approximately parallel to a and Z nearly parallel to c. Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent. It is brittle, shows irregular fracture and a good cleavage parallel to {010}. Dmeas. 3.15±0.10 g/cm3, Dcalc. 3.193 g/cm3 (for the empirical formula). The five strongest powder diffraction lines [d in Å (I)(hkl)] are 10.22 (10)(100), 7.036 (8)(110), 4.250 (5)(111), 2.865 (4)(), 4.833 (3)(020,011). The d spacings are very similar to those of its Zn analogue, ojuelaite. The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe2+0.950.05)Σ1.00(Fe3+1.80Al0.20)Σ2.00(As1.48P0.52)Σ2.00O8(OH)2·4H2O (R = 1.6%), and confirms an arthurite-type atomic arrangement.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, V.T., Fahey, J.J. and Axelrod, J.M. (1948) Mansfieldite, a new arsenate, the aluminum analogue of scorodite, and the mansfieldite-scorodite series. American Mineralogist, 33, 122134.Google Scholar
Blaß, G. and Helsper, G. (1994) The “Sophie” mine near Gosenbach in the Siegerland and its minerals. Mineralien-Welt, 5 (6), 4047 (in German).Google Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B 47, 192197.CrossRefGoogle Scholar
Cesbron, F., Romero, S.M. and Williams, S.A. (1981) La mapimite et l’ojuélaïte, deux nouveaux arséniates hydratés de zinc et de fer de la mine Ojuela, Mapimi, Mexique. Bulletin de Minéralogie, 104, 582586.CrossRefGoogle Scholar
Clark, A.H. and Sillitoe, R.H. (1969) Arthurite from Potrerillos, Atacama Province, Chile. Mineralogical Magazine, 37, 519520.CrossRefGoogle Scholar
Correia Neves, J.M. (1960) Pegmatitos com berilo, columbite-tantalite e fosfatos da Bendada (Sabugal, Guarda). Memórias e Notícias, Museu e Laboratório Mineralógico e Geológico da Universidade de Coimbra, Coimbra, 50, 163. pp. (in Portuguese).Google Scholar
Dasgupta, D.R., Datta, A.K. and Sen Gupta, N.R. (1966) Occurrence of scorodite in a pegmatite in Bhilwara district, Rajasthan, India. Mineralogical Magazine, 35, 776777.CrossRefGoogle Scholar
Davis, R.J. and Hey, M.H. (1964) Arthurite, a new copper-iron arsenate from Cornwall. Mineralogical Magazine, 33, 937941.CrossRefGoogle Scholar
Davis, R.J. and Hey, M.H. (1969) The cell-contents of arthurite redetermined. Mineralogical Magazine, 37, 520521.CrossRefGoogle Scholar
Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, FeAsO4·2H2O. American Mineralogist, 70, 838844.Google Scholar
Dutrizac, J. E. and Jambor, J. L. (1988) The synthesis of crystalline scorodite, FeAsO4·2H2O. Hydrometallurgy, 19, 377384.CrossRefGoogle Scholar
Favreau, G. and Dietrich, J.E. (2006) The minerals of Bou Azzer. Lapis, 31 (7-8), 2768 (in German).Google Scholar
Frost, R.L., Duong, L. and Martens, W. (2003) Molecular assembly in secondary minerals Raman spectroscopy of the arthurite group species, arthurite and whitmoreite. Neues Jahrbuch für Mineralogie, Monatshefte, 2003, 223240.CrossRefGoogle Scholar
Hughes, J.M., Bloodaxe, E.S., Kobel, K.D. and Drexler, J.W. (1996) The atomic arrangement of ojuelaite, ZnFe2(AsO4 3+)2(OH)2·4H2O. Mineralogical Magazine, 60, 519–21.CrossRefGoogle Scholar
Jambor, J.L., Viñals, J., Groat, L.A. and Raudsepp, M. (2002) Cobaltarthurite, Co2+Fe2 3+(AsO4)2(OH)2·4H2O, a new member of the arthurite group. The Canadian Mineralogist, 40, 725732.CrossRefGoogle Scholar
Jensen, M. (1985) The Majuba Hill mine, Pershing County. Mineralogical Record, 16, 5772.Google Scholar
Jensen, M. (1993) Update on the mineralogy of the Majuba Hill mine, Pershing County. Mineralogical Record, 24, 171180.Google Scholar
Kampf, A.R. (2005) The crystal structure of cobaltarthurite from the Bou Azzer District, Morocco: the location of hydrogen atoms in the arthurite structure type. The Canadian Mineralogist, 43, 13871391.CrossRefGoogle Scholar
Kampf, A.R., Favreau, G. and Steele, J. M. (2004) Cobaltarthurite from the Bou Azzer district, Morocco. 5th International Conference on Mineralogy and Museums. Paris, France, September 6-8, 2004, Program and abstract volume, p. 40.Google Scholar
Kastning, J. and Schlüter, J. (1994) The Minerals of Hagendorf and their Identification. Schriften des Mineralogischen Museums der Universität Hamburg, Band 2, C. Weise Verlag, Munich, Germany (in German).Google Scholar
Keller, P. and Hess, H. (1978) Die Kristallstruktur von Arthurit, CuFe2 3+[(H2O)4|(OH)2|(AsO4)2]. Neues Jahrbuch für Mineralogie, Abhandlungen, 133, 291302.Google Scholar
Krause, E. and Ettel, V.A. (1988) Solubility and stability of scorodite, FeAsO4·2H2O: New data and further discussion. American Mineralogist, 73, 850854.Google Scholar
Le Berre, J.F., Cheng, T.C., Gauvin, R. and Demopoulos, G.P. (2007) Hydrothermal synthesis and stability evaluation of mansfieldite in comparison to scorodite. Canadian Metallurgical Quarterly, 46, 110.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J., Kolitsch, U., Birch, W.D. and Sejkora, J. (2008) Kunatite, CuFe2 3+(PO4)2(OH)2·4H2O, a new member of the whitmoreite group, from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy, 14, 312.Google Scholar
Moore, P.B. (1970) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135169.Google Scholar
Moore, P.B., Kampf, A.R. and Irving, A.J. (1974) Whitmoreite, Fe2+Fe2 3+(OH)2(H2O)4[PO4]2, a new species: Its description and atomic arrangement. American Mineralogist, 59, 900905.Google Scholar
Mücke, A. (1981) The parageneses of the phosphate minerals of the Hagendorf pegmatite – a general view. Chemie der Erde, 40, 217234.Google Scholar
Paktunc, D., Dutrizac, J. and Gertsman, V. (2008) Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: Implications for arsenic mobility. Geochimica et Cosmochimica Acta, 72, 26492672.CrossRefGoogle Scholar
Peacor, D.R., Dunn, P.J. and Simmons, W.B. (1984) Earlshannonite, the Mn analogue of whitmoreite, from North Carolina. The Canadian Mineralogist, 22, 471474.Google Scholar
Raudsepp, M. and Pani, E. (2002) The crystal structure of cobaltarthurite, Co2+Fe2 3+(AsO4)2(OH)2·4H2O, a Rietveld refinement. The Canadian Mineralogist, 40, 733737.CrossRefGoogle Scholar
Rewitzer, C. and Röschl, N. (1984) Portugal - locality descriptions and travel recommendations. Lapis, 9(12), 1317 (in German).Google Scholar
Rimstidt, J.D. and Dove, P.M. (1987) Solubility and stability of scorodite, FeAsO4·2H2O: Reply. American Mineralogist, 72, 852855.Google Scholar
Schnorrer-Köhler, G. and Rewitzer, Chr. (1991) Bendada - a phosphate pegmatite in the middle part of Portugal. Lapis, 16(5), 2133 (in German).Google Scholar
Sejkora, J., Škoda, R. and Ondruš, P. (2006) New naturally occurring mineral phases from the Krásno Horní Slavkov area, western Bohemia, Czech Republic. Journalof the Czech GeologicalSociety, 51, 159187.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX . Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Vencato, I., Mascarenhas, Y.P. and Mattievich, E. (1986) The crystal structure of Fe2+Fe2 3+(PO3OH)4(H2O)4: a new synthetic compound of mineralogical interest. American Mineralogist, 71, 222226.Google Scholar
Vink, B.W. (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chemical Geology, 130, 2130.CrossRefGoogle Scholar
Walenta, K. (1963) Mansfieldite from Neubulach in the Württemberg Black Forest. Neues Jahrbuch für Mineralogie, Monatshefte, 1963, 7987 (in German).Google Scholar
Walenta, K. (1975) The secondary minerals of the barite vein of the Clara mine near Oberwolfach, central Black Forest. Aufschluss, 26, 369–311.(in German).Google Scholar
Yvon, K., Jeitschko, W. and Parthé, E. (1977) LAZY PULVERIX, a computer program, for calculating X-ray and neutron diffraction powder patterns. Journal of Applied Crystallography, 10, 7374.CrossRefGoogle Scholar
Supplementary material: File

Kolitsch et al. supplementary material

Structure factor data

Download Kolitsch et al. supplementary material(File)
File 88.9 KB