Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T09:23:35.793Z Has data issue: false hasContentIssue false

Ba-, Si- and vacancy-rich phlogopites from the talc-bearing sulfide ore deposit of La Creuse, Beaujolais, France

Published online by Cambridge University Press:  02 July 2018

Marie-Lola Pascal*
Affiliation:
Sorbonne Université, CNRS, Institut des Sciences de la Terre Paris, ISTeP, F-75005 Paris, France
Michel Fonteilles
Affiliation:
Sorbonne Université, CNRS, Institut des Sciences de la Terre Paris, ISTeP, F-75005 Paris, France
Véronique Tournis
Affiliation:
16 rue Duranti, 75011 Paris, France
Benoît Baptiste
Affiliation:
Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
Jean-Louis Robert
Affiliation:
Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
Jean-Claude Boulliard
Affiliation:
Sorbonne Université, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
*

Abstract

Ba-rich and Si-rich phlogopites occur in the talc-bearing rocks of the La Creuse sulfide ore deposit in Beaujolais, France. They form a group of compositions completely separated from the common Al-rich phlogopites that occur in the surrounding talc-free metasiltites and metarhyolites, with higher Ba and Mg and lower Al contents. The Ba-rich phlogopites have a relatively narrow compositional range (0.24 to 0.80 Ba per formula unit, for 44 valencies) with high and constant Si (5.8 atoms per formula unit, apfu) and Mg + Fe (5.6 apfu), probably buffered by the presence of talc. Compared to low-Al phlogopites from talc-free rocks, the excess charge introduced by the BaK–1 substitution is compensated by interlayer vacancies. Such a high level of interlayer vacancy (0.56 pfu), related to the talc-producing metasomatic conditions, is essential for the stability of this special group of Ba-rich and Si-rich phlogopites.

Single crystal X-ray diffraction analyses were performed. Ba-rich and Si-rich phlogopite is monoclinic, space group C2/m, (R = 5.31%) with a = 5.3185(5), b = 9.2136(9), c = 10.1349(11) Å and β = 100.131(11)°. The occupancies of Mg/Fe and K/Ba were refined exploring different vacancies. The solutions giving the best R factor (4.77%) and goodness-of-fit (1.06) are obtained with 15% < vacancy < 40% at the interlayer site.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

Associate Editor: G. Diego Gatta

References

Alietti, E., Brigatti, M.F. and Poppi, L. (1995) The crystal structure and chemistry of high-aluminium phologopite. Mineralogical Magazine, 59, 149157.Google Scholar
Bailey, S.W. (1984) Crystal structure of the true micas. Pp. 1360 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC.Google Scholar
Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti, G. (1993) Crystal chemical variations in Ba-rich biotites from gabbroic rocks of lower crust Ivrea zone, NW Italy. Contributions to Mineralogy and Petrology, 113, 8799.Google Scholar
Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, J.B.H. (1989) Barium-titanium- rich phlogopites in marbles from Rogaland, southwest Norway. American Mineralogist, 74, 439447.Google Scholar
Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature and solid solution on atomistic models. Pp. 151 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, P.F., Thompson, J.B. Jr and Guggenheim, S., editors). Reviews in Mineralogy & Geochemistry, 46. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of Ba-rich trioctahedral micas-1M. European Journal of Mineralogy, 5, 857871.Google Scholar
Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C. (1996) Crystal chemistry and petrologic significance of Fe3+- rich phlogopite from the Tapira carbonatite complex, Brazil. American Mineralogist, 81, 913927.Google Scholar
Brigatti, M.F., Guidotti, C.V., Malferrari, D. and Sassi, F.P. (2008) Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequence from western Maine. American Mineralogist, 93, 396408.Google Scholar
Bucher-Nurminen, K. (1982) Mechanism of mineral reactions inferred from textures of impure dolomitic marbles from East Greenland. Journal of Petrology, 23, 325343.Google Scholar
Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica, A51, 887897.Google Scholar
Comodi, P., Nazzareni, S., Fumagallo, P. and Capitani, G.C. (2011) The peculiar crystal chemistry of phlogopite from metasomatized peridotites: evidence from laboratory and nature. Periodico di Mineralogia, 80, 181197.Google Scholar
Dasgupta, S., Chakroborti, S., Sengupta, P., Bhattacharya, P.K. and Banerjee, H. (1989) Compositional characteristics of kinoshitalite form the Sausar Group, India. American Mineralogist, 74, 200202.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A., Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.Google Scholar
Donnay, G., Donnay, J.D.H. and Takeda, H. (1964) Trioctahedral one-layer micas. Prediction of the structure from composition and cell dimensions. Acta Crystallographica, 17, 13741381.Google Scholar
Ďurovič, S. (1992) Layer stacking in general polytypic structures. Pp. 667680 in: International Tables for Crystallography C (Wilson, A.C.J., editor). Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
Edgar, A.D. (1992) Barium-rich phlogopite and biotite from some Quaternary alkali mafic lavas, West Eifel, Germany. European Journal of Mineralogy, 4, 321330.Google Scholar
Fialin, M., Wagner, C., Metrich, N., Humler, E., Galoisy, L. and Bezos, A. (2001) Fe3+/SFe vs. Fe-Lα peak energy for minerals and glasses: recent advances with the electron microprobe. American Mineralogist, 86, 456465.Google Scholar
Fialin, M., Bezos, A., Wagner, C., Magnien, V. and Humler, E. (2004) Quantitative electron microprobe analysis of Fe3+/ΣFe: Basic concepts and experimental protocol for glasses. American Mineralogist, 89, 654662.Google Scholar
Fialin, M., Wagner, C. and Pascal, M-L. (2011) Iron speciation using electron microprobe techniques: Applications to glassy melt pockets within a spinel lherzolite xenolith. Mineralogical Magazine, 75, 347362.Google Scholar
Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal structure refinement of anandite-2Or, a barium and sulphur bearing trioctahedral mica. American Mineralogist, 70, 12981308.Google Scholar
Fleischer, M., Chao, G.Y. and Kato, A. (1975) New mineral names. American Mineralogist, 60, 485489.Google Scholar
Foster, M.D. (1960) Interpretation of the composition of trioctahedral micas. U.S Geological Survey Professional Paper 354-B, 1149.Google Scholar
Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore, J.M. (1995) An Fe analogue of kinoshitalite from the Broken Hill massive sulfide deposit in the Namaqualand Metamorphic Complex, South Africa. American Mineralogist, 80, 833840.Google Scholar
Frondel, C. and Ito, J. (1967) Barium-rich phlogopite from Långban, Sweden. Arkiv för Mineralogi och Geologi, 4, 445447.Google Scholar
Gaspar, J.C. and Wyllie, P.J. (1982) Barium phlogopite from the Jacupiranga carbonatite, Brazil. American Mineralogist, 67, 9971000.Google Scholar
Giuseppetti, G. and Tadini, C. (1972) The crystal structure of 2O brittle mica; anandite. Tschermak's Mineralogische und Petrographische Mitteilungen, 18, 169184.Google Scholar
Glassley, W.E. (1975) High grade regional metamorphism of some carbonate bodies: significance for the orthopyroxene isograd. American Journal of Science, 275, 11331163.Google Scholar
Gnos, E. and Armbruster, Th. (2000) Kinoshitalite, Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry. American Mineralogist, 85, 242250.Google Scholar
Graeser, S., Hetherington, C.J. and Gieré, R. (2003) Ganterite, a new barium- dominant analogue of muscovite from the Berisal Complex, Simplon Region, Switzerland. Canadian Mineralogist, 41, 12711280.Google Scholar
Guggenheim, S. and Frimmel, HE. (1999) Ferrokinoshitalite, a new species of brittle mica from the Broken Hill mine, South Africa: Structural and mineralogical characterization. Canadian Mineralogist, 37, 14451452.Google Scholar
Guggenheim, S. and Kato, T. (1984) Kinoshitalites and Mn phlogopites: Trial refinements in subgroup symmetry and further refinements in ideal symmetry. Mineralogical Journal, 12, 15.Google Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357467 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC.Google Scholar
Guidotti, C.V. and Dyar, M.D. (1991) Ferric iron in metamorphic biotite and its petrologic and crystallographic implications. American Mineralogist, 76, 161175.Google Scholar
Harlow, G.E. (1995) Crystal chemistry of barian enrichment in micas from metasomatized inclusions in serpentinite, Montagua Fault Zone, Guatemala. European Journal of Mineralogy, 7, 775789.Google Scholar
Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. American Mineralogist, 58, 889900.Google Scholar
Hazen, R.M., Finger, L.W. and Velde, D. (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica. American Mineralogist, 66, 586591.Google Scholar
Hetherington, C.J. (2001) Barium Anomalies in the Berisal Complex, Simplon Region, Switzerland. PhD. thesis, Universität Basel, Switzerland.Google Scholar
Kato, T., Miùra, Y., Yoshii, M. and Maeda, K. (1979) The crystal structure of 1M-kinoshitalite, a new barium brittle mica and 1M-manganese trioctahedral micas. Mineralogical Journal, 9, 392408.Google Scholar
Kogarko, L.N., Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Ottolini, L. and Grice, J.D. (2005) Oxykinoshitalite, a new mica from Fernando-de-Noronha island, Pernambuco, Brazil: Occurrence and crystal structure. Canadian Mineralogist, 43, 15011510.Google Scholar
Kogure, T., Miyawaki, R. and Banno, Y. (2005) The true structure of wonesite, an interlayer-deficient trioctahedral sodium mica. American Mineralogist, 90, 725731.Google Scholar
Kretz, R. (1980) Occurrence, mineral chemistry and metamorphism of Precambrian carbonate rock in a portion of the Grenville Province. Journal of Petrology, 21, 573620.Google Scholar
Lacroix, A. (1910) Minéralogie de la France et de ses Colonies: Description Physique et Chimique des Minéraux, Étude des Conditions Géologiques de Leurs Gisements, Tome Quatrième. Librairie Polytechnique, Paris, 744 pp.Google Scholar
Ma, C. and Rossman, G.R. (2006) Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada. American Mineralogist, 91, 702705.Google Scholar
Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Barian-titanian biotites in nephelinites from Oahu, Hawaii. American Mineralogist, 64, 156159.Google Scholar
Matsubara, S., Kato, A., Nagashima, A. and Matsuo, G. (1976) The occurrence of kinoshitalite from Hokkejino, Kyoto Prefecture, Japan. Bulletin of the Natural Science Museum Series C, 2, 7178.Google Scholar
Mercier, P.H.J., Rancourt, D.G., Redhammer, G.J., Lalonde, A.E., Robert, J-L., Berman, R.G. and Kodama, H. (2006) Upper limit of the tetrahedral rotation angle and factors affecting octahedral flattening in synthetic and natural 1M polytype C2/m space group micas. American Mineralogist, 91, 831849.Google Scholar
Pan, Y. and Fleet, M.E. (1991) Barium feldspar and barian chromian muscovite from the Hemlo area, Ontario. The Canadian Mineralogist, 29, 481498.Google Scholar
Pattiaratchi, D.B., Saari, E. and Sahama, T.G. (1967) Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Mineralogical Magazine, 36, 14.Google Scholar
Peterlongo, J.M. (1960) Les terrains cristallins des Monts du Lyonnais (Massif central français). Annales de la Faculté des Sciences, Clermont-Ferrand, 4, 187 pp.Google Scholar
Poupon, M. (1989) Les Altérations Hydrothermales Associées aux Amas Sulfurés de Chessy et de Sain Bel, Paléozoïque, Série de la Brévenne, Massif Central Français. Document du BRGM n° 177, Editions du BRGM (Orléans, France), 215 pp.Google Scholar
Rice, J.M. (1977) Progressive metamorphism of impure dolomitic limestone in the Marysville aureole, Montana. American Journal of Science, 277, 124.Google Scholar
Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Mueller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. Clays and Clay Minerals, 46, 586595.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Schreyer, W., Abraham, K. and Kulke, H. (1980) Natural sodium phlogopite coexisting with potassium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology, 74, 223233.Google Scholar
Shaw, C.S.J. and Penczak, R.S. (1996) Barium and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, northwestern Ontario. The Canadian Mineralogist, 34, 967975.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Sheldrick, G.M. (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Solie, D.N. and Su, S.C. (1987) An occurrence of Ba-rich micas from the Alaska range. American Mineralogist, 72, 995999.Google Scholar
Spear, F.S., Hazen, R.M. and Rumble III, D. (1981) Wonesite: a new rock-forming silicate from the Post Pond Volcanics, Vermont. American Mineralogist, 66, 100105.Google Scholar
Thompson, R.N. (1977) Primary basalts and magma genesis. Contributions to Mineralogy and Petrology, 60, 91108.Google Scholar
Toraya, H. (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Zeitschrift für Kristallographie, 157, 173190.Google Scholar
Tournis, V. (1990) Les indices du Beaujolais méridional et les altérations qui y sont associées: comparaison avec le secteur de la Brévenne. PhD thesis, Université Paris 6, France.Google Scholar
Tracy, R.J. (1991) Ba-rich micas from the Franklin marble, Lime Crest and Sterling Hill, New Jersey. American Mineralogist, 76, 16831693.Google Scholar
Veblen, D. (1983 a) Exsolution and crystal chemistry of the sodium mica wonesite. American Mineralogist, 66, 554565.Google Scholar
Veblen, D. (1983 b) Microstructures and mixed layering in intergrown wonesite, chlorite, talc, biotite, and kaolinite. American Mineralogist, 68, 566580.Google Scholar
Velde, D. (1979) Trioctahedral mica in melilite-bearing eruptive rocks. Carnegie Institution of Washington Yearbook 78, 468475.Google Scholar
Wendlandt, R.F. (1977) Barium phlogopite from Jaystack Butte, Highwood Mountains, Montana. Carnegie Institution of Washington Yearbook, 76, 534539.Google Scholar
Yoshii, M., Maeda, K., Kato, T., Watanabe, T., Yui, S., Kato, A. and Nagashima, K. (1973 a) Kinoshitalite, a new mineral from the Noda Tamagawa mine, Iwate Prefecture. Chigaku Kenkyu, 24, 181190.Google Scholar
Yoshii, M., Togashi, Y. and Maeda, K. (1973 b) On the intensity changes of basal reflections with relation to barium content in manganoan phlogopites and kinoshitalite. Bulletin of the Geological Survey of Japan, 24, 18.Google Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993) Barian titanian phlogopite from potassic lavas in northwest China: chemistry, substitutions and paragenesis. American Mineralogist, 78, 10561065.Google Scholar
Supplementary material: File

Pascal et al. supplementary material

Pascal et al. supplementary material 1

Download Pascal et al. supplementary material(File)
File 40.7 KB