Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T06:06:37.993Z Has data issue: false hasContentIssue false

The stability of tobermorite in the system CaO-SiO2-H2O at elevated temperatures and pressures

Published online by Cambridge University Press:  14 March 2018

K. Speakman*
Affiliation:
Building Research Station, Garston, Warlord, Herts.

Summary

Hydrothermal studies in the silica-rich region of the CaO-SiO2-H2O system have given information on the stability field of tobermorite. At saturated steam pressures tobermorite is unstable relative to xonotlite (C6S6H) above 140 °C but between 10 000 and 40 000 lb/in.2 (69 and 276 N/mm2), the decomposition temperature is raised to 285±5 °C. Tobermorite is stable at all compositions between C/S = 0·67 and 1·0 up to this temperature and has a formula close to C5S6H5. Variable compositions reported earlier are thought to be mixtures rather than lime-rich or silica-rich tobermorites.

Data have also been collected on the equilibrium assemblages below C/S = 0·67 and between C/S = 1·0 and 1·5 involving truscottite, gyrolite, xonotlite, foshagite, and hillebrandite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, (T.), 1851. Phil. Mag., ser. 4, vol. 1, p. 111.Google Scholar
Barrer, (R. M.), 1948. Journ. Chem. Soc., p. 127.Google Scholar
Buckner, (D. A.) and Roy, (R.), 1955. Bull. Geol. Soc. Amer., vol. 66, p. 1536.Google Scholar
Buckner, (D. A.) and Roy, (R.), 1960. Amer. Journ. Sci., vol. 258, p. 132.CrossRefGoogle Scholar
Chalmers, (l. A.), Farmer, (V. C.), Harker, (R. I.), Kelly, (S.), and Taylor, (H. F. W.), 1964. Min. Mag., vol. 33, p. 821.Google Scholar
Harker, (R. I.), 1960. Bull. Geol. Soc. Amer., vol. 71, p. 1881.Google Scholar
Harker, (R. I.), 1964. Journ. Amer. Ceram. Soc., vol. 47, p. 521.CrossRefGoogle Scholar
Heddle, (M. F.), 1880. Min. Mag., vol. 4, p. 119.Google Scholar
Heller, (L.) and Taylor, (H. F. W.), 1951. Journ. Chem. Soc., p. 2397.Google Scholar
Hövig, (P.), 1914. Jaarb. Mijnwezen Nederland. Oost-Indië, Batavia, 1914, vol. 41 (for 1912), p. 202.Google Scholar
Mackay, (A. L.) and Taylor, (H. F. W.), 1953. Min. Mag., vol. 30, p. 80.Google Scholar
Mackay, (A. L.) and Taylor, (H. F. W.), 1954. Ibid., vol. 30, p. 450.Google Scholar
Meyer, (J. W.) and Jaunarajs, (K. L.), 1961. Amer. Min., vol. 46, p. 913.Google Scholar
Minato, (H.) and Kato, (A.), 1967. Min. Journ. (Japan), vol. 5, p. 144.Google Scholar
Muan, (A.) and Osborn, (E. F.), 1952. Industrial Heating, vol. 19, p. 1293.Google Scholar
Roy, (D. M.) and Harker, (R. I.), 1960. Proc. 4th Internat. Syrup. Chem. Cements, vol. 1, p. 196. Published 1962.Google Scholar
Roy, (D.)5.) and Johnson, (A. M.), 1965. Proc. Internat. Symp. Autoclaved Calcium Silicate Building Products, p. 114. Published 1967.Google Scholar
Strung, (H.) and Micheelsen, (H.), 1958. Naturwiss., vol. 45, p. 515.Google Scholar
Taylor, (H. F. W.), 1950. Journ. Chem. Soc., p. 3682.Google Scholar
Taylor, (H. F. W.), 1962. Journ. Appl. Chem., vol. 2, p. 3.Google Scholar
Taylor, (H. F. W.) and Howison, (J. W.), 1956. Clay Min. Bull., vol. 3, p. 98.Google Scholar
Taylor, (H. F. W.), 1960. Proc. Internat. Syrup. Chem. Cements, vol. 1, p. 167. Published 1962.Google Scholar
[Volkoiskii, (B. V.), Konovalov, (P. F.), and Tolmachev, (G. P.)] 1964. Google Scholar