Copepods are an abundant and diverse group of crustaceans. One order of free living copepods, the calanoids, are usually < 3 mm in length, planktonic, and possess very rapid escape responses. These animals dominate planktonic communities and their escape reactions contribute to their success. Although all calanoids respond to hydrodynamic disturbances with an escape jump, minimum reaction times vary among species, ranging from 1.5 to 6 msec. To help us understand the physiological basis underlying the phenomenally short reaction times we initiated a comparative study of the internal structures by using transmission electron microscopy (TEM).
Traditional chemical fixation was adequate for several species of copepods, and sensory structures were clearly shown. In these calanoids, minimum reaction times ranged from 3 msec to 6 msec and can be partially explained by giant axons, the most common way invertebrates increase the rate of conduction of nerve impulses. However, the internal structures of two copepod species, Euchaetarimana and Undinula vulgaris, were distorted (Fig. 1).