Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T04:40:16.864Z Has data issue: false hasContentIssue false

Nature of the inhibition layer in GA baths

Published online by Cambridge University Press:  18 February 2014

D. Zapico Álvarez
Affiliation:
ArcelorMittal Global R&D - Automotive Products Centre, Voie Romaine BP 30320, 57283 Maizières-Lès-Metz, France. e-mail: [email protected] École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
F. Bertrand
Affiliation:
ArcelorMittal Global R&D - Automotive Products Centre, Voie Romaine BP 30320, 57283 Maizières-Lès-Metz, France. e-mail: [email protected]
J.-M. Mataigne
Affiliation:
ArcelorMittal Global R&D - Automotive Products Centre, Voie Romaine BP 30320, 57283 Maizières-Lès-Metz, France. e-mail: [email protected]
M.-L. Giorgi
Affiliation:
École Centrale Paris, Grande Voie des Vignes, 92295 Châtenay-Malabry Cedex, France
Get access

Abstract

The nature of the intermetallic layer which forms on the steel surface during immersionin typical galvanizing baths for galvannealed (GA) sheets production has been investigatedon two commercial Titanium-stabilized Interstitial-Free (Ti-IF) steel substratesgalvanized in baths with different Al contents. Results from this study show that in bothcases the inhibition layer is biphasic and composed of a very thin Al-rich phase layer,identified as Fe2Al5Znx, and a thicker Zn-rich phase layeron top of it, identified as δ. Experimental results also show that theFe2Al5Znx phase layer becomes discontinuouswhen decreasing the bath Al content. Discussions about the mechanisms of formation and thefinal microstructure of this inhibiting layer are also tackled in this paper by means ofthe Al-Fe-Zn ternary phase diagram at 460 °C and assumptions to justify any deviation fromthermodynamic equilibrium are as well proposed.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tang, N.Y., J. Phase Equilibria 21 (2000) 7077
Y. Leprêtre, J.M. Mataigne, M. Guttmann, J. Philibert, Reactive interdiffusion in the Fe-Al-Zn system: Reaction mechanisms during hot-dip galvanizing, F.E. Goodwin ed., Zinc-Based Steel Coating Systems: Production and Performance. USA The Minerals, Metals & Materials Society, 1998, pp. 95–106
Mataigne, J.M., Rev. Métall. 106 (2009) 27-33
Y. Leprêtre, Étude des mécanismes réactionnels de la galvanisation, Ph.D Thesis, Université Paris XI Orsay, 1996 (in French)
Guttmann, M., Mat. Sci. Forum 155/156 (1994) 527-548
Chen, L., Fourmentin, R., McDermid, J.R., Metall Mater Trans. A 39 (2008) 21282142
Úředniček, M., Kirkaldy, J.S., Z. Met. kd. 64 (1973) 899910
Saito, M., Uchida, Y., Kittaka, T., Hirose, Y., Hisamatsu, Y., Tetsu-to-Hagané 77 (1991) 947-954 (in Japanese)
Sugiyama, M., Okada, M., Takada, Y., Suehiro, M., J. Japan Inst. Met. 65 (2001) 397-402 (in Japanese)
Vitkin, A.I., Kokorin, G.A., Grishko, A.G., Tyukanov, P.A., Metal Science and Heat Treatment 15 (1973) 332-334
Yamaguchi, H., Hisamatsu, Y., Trans. Iron Steel Inst. Jpn 19 (1979) 649-658
S. Dionne, G. Botton, M. Charest, F.A. Goodwin, study of interrupted galvannealing of Interstitials Free steels with different substrate compositions, E. Essadiqi, F. Goodwin, M. Elboujdani eds., Proceedings International Symposium on Materials in the Automotive Industry. Toronto, 2001, pp. 351-365
Nakamori, T., CAMP – ISIJ 5 (1992) 1637-1640
Adachi, Y., Nakamori, T., Kamei, K., J. Japan Inst. Metals 56 (1992) 1235-1241
Chen, Z.W., Sharp, R.M., Gregory, J.T., Mater Sci. Technol. 6 (1990) 1173-1176
McDevitt, E., Morimoto, Y., Meshii, M., ISIJ Int. 37 (1997) 776-782