Published online by Cambridge University Press: 15 April 2011
Because of the importance of lightweight constructions, nowadays other materials are moreand more substituting components which had previously been made of metals. The usage ofshort fiber-reinforced plastics instead of metals seems self-evident in many cases becauseof their high specific strength and the favorable manufacturing processes. For fatiguelife prediction a simulation process was established, which takes into account the fiberorientation and distribution as a result of an injection molding simulation. Hypothesesfor fatigue life prediction of orthotropic materials have been derived from a lot of testson specimens, implemented in the standard fatigue software tool FEMFAT and verified so farwith component tests.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.