Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:31:57.375Z Has data issue: false hasContentIssue false

A molecular dynamics simulation study of semi-solid-state Fe:high temperature elasticity and void formation in liquid

Published online by Cambridge University Press:  30 October 2014

B. Monasse
Affiliation:
Mines-Paristech, Centre de Mise en Forme des Matériaux, BP 207, 06904 Sophia-Antipolis, France. e-mail: [email protected]
Ch. Pradille
Affiliation:
Mines-Paristech, Centre de Mise en Forme des Matériaux, BP 207, 06904 Sophia-Antipolis, France. e-mail: [email protected]
Y. Chastel
Affiliation:
Mines-Paristech, Centre de Mise en Forme des Matériaux, BP 207, 06904 Sophia-Antipolis, France. e-mail: [email protected] Present address: Renault DIMat, 78288 Guyancourt, France
Get access

Abstract

Hot tearing defects appear during the last steps of casting solidification of dendrites.The crystalline structure traps a small amount of liquid metal, which is depressed, andcavities are spontaneously initiated. Molecular dynamics (MD) simulations of pure iron areable to predict, on one hand, the high temperature elastic modulus of crystals, and on theother hand, the cavitation event in liquid metal and near the solid-liquid growth front.High values of elastic tensor components are predicted close to the melting temperature.We conclude that a weakening of the mechanical properties of the crystal is not the reasonfor failure initiation. The crystals are thinned by partial melting as the effect ofnegative pressure increases. The cavitation is spontaneously initiated under a very highnegative pressure. The cavity expands very quickly and applies a pressure wave to thethinned crystals. We propose that this crystal thinning/pressure wave coupling is able toinitiate cracks inside the crystal.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Campbell, Castings, Butterworth-Heinemann, Oxford, United-Kingdom, 1991 Google Scholar
Rappaz, M., Drezet, J.M., Gremaud, M., Metall. Mater. Trans. A 30A (1999) 449-55 Google Scholar
Spittle, J.A., Cushway, A.A., Met. Technol. 10 (1983) 6-13 Google Scholar
Drezet, J.M., J. Phys. IV 9 (1999) 53-62 Google Scholar
Vernede, S., Dantzig, J.A., Rappaz, M., Acta Mater. 57 (2009) 1554-1569 Google Scholar
Hoyt, J.J., Potter, A.A., Metall. Mater. Trans. A 43A (2012) 3972-3977 Google Scholar
Mineev, V.N., Funtikov, A.I., Phys. Usp. 47 (2004) 671-686 Google Scholar
Y.D. Fomin, V.N. Ryzhov, V.V. Brazhkin, arXiv:1301.7158 (2013) Google Scholar
Rosato, V., Guillopé, M., Legrand, B., Phil. Mag. A 59 (1989) 321-336 Google Scholar
Kojima, R., Susa, M., Sci. Techn. Adv. Mater. 5 (2004) 497-502 Google Scholar
Ducastelle, F., Cyrot-Lackmann, F., J. Phys. Chem. Sol. 31 (1970) 1295-1306 Google Scholar
Basinski, Z.S., Hume, R.W., Sutton, A.L., Sutton, F.R.S., Proc. Roy. Soc. London A 229 (1955) 459-467 Google Scholar
Cockett, G.H., Davis, C.D., J. Iron steel Inst. (London) 201 (1963) 110-115 Google Scholar
Kohlhaas, R., Dunner, P., Schmitz-Spranghe, N., Z. Angew. Phys. 23 (1967) 245-249 Google Scholar
Lucas, L., Mém. Sci. Rev. Mét. 69 (1972) 763-772 Google Scholar
Watanabe, S., Tsu, Y., Takano, K., Shiraishi, Y., Jpn. Inst. Met. 45 (1981) 242-249 Google Scholar
Guo, G.Y., Wang, H.H., Chin. J. Phys. 38 (2000) 949-961 Google Scholar
Fisher, J.C., Hollomon, J.H., Turnbull, D., J. Appl. Phys. 19 (1948) 775-784 Google Scholar
Campbell, J., J. Appl. Phys. D 1 (1968) 1085-1088 Google Scholar
Einstein, A., Annal. Phys. 17 (1905) 549-560 Google Scholar
T. Lida, R.I.L. Guthrie, The physical properties of liquid metals, Clarendon Press, Oxford, 1988 Google Scholar