Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T04:24:19.337Z Has data issue: false hasContentIssue false

NOSEMATIDAE AND OTHER PROTOZOA AS AGENTS FOR CONTROL OF GRASSHOPPERS AND LOCUSTS: CURRENT STATUS AND PROSPECTS

Published online by Cambridge University Press:  31 May 2012

Dan L. Johnson*
Affiliation:
Research Scientist, Agriculture and Agri-Food Canada, Research Centre, P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1, [email protected]
Get access

Abstract

Protozoa known to infect Acrididae include certain Amoebida (Phylum Rhizopoda), Eugregarinida, Neogregarinida (Phylum Apicomplexa) and at least one species from the Phylum Ciliophora, but are mainly Microsporida (Phylum Microspora). Among the Microsporida, Nosema locustae Canning has been the most common subject of large-scale field testing as a potential microbial control of grasshoppers and locusts. Although there have been demonstrations of significant impacts of Protozoa such as Nosema spp. on survival, development, reproduction and feeding of grasshoppers and locusts, these candidates have not met the requirements for fast-acting control of Acrididae. However, recently discovered and as yet undiscovered Microspora and other Protozoa may offer reliable non-chemical control of grasshoppers and locusts. Research on candidates such as Nosema locustae has not been wasted effort; at a minimum, research invested toward development of methods of formulation, application, assessment and ecological fate of these potential microbial control agents has provided useful information needed to prepare for the eventuality of discovery of more fast-acting protozoa, and has contributed to development of field methods required for testing of other microbial agents. With improvements in understanding of insect behavioral and physiological responses, satisfactory short-term efficacy (perhaps resulting from combined formulations with behavioral modifiers or stressors) may allow N. locustae, N. cuneatum Henry, N. acridophagus Henry or Johenrea locustae Lange et al. to also serve a role in limiting acridid abundance and activity, either as an agent of biological control in sites requiring special care, or within a rangeland IPM context.

Résumé

Parmie les protozoaires reconnus pour leurs propriétés infectueuses envers les Acrididae, il faut compter certains Amoebida (phylum Rhizopoda), des Eugregarinida, des Neogregarinida (phylum Apicomplexa) et au moins une espèce du phylum des Ciliophora, mais la plupart sont des Microsporida (phylum Microspora). Parmi ceux-ci, Nosema locustae Canning est certainement le plus couramment utilisé comme agent microbien de lutte contre les criquets dans les programmes de recherche à grande échelle sur le terrain. Bien que les protozoaires tels que Nosema spp. se soient avérés assez efficaces contre les criquets en affectant leur survie, leur développement, leur reproduction et leur alimentation, ils ne répondent pas aux normes d'un agent de lutte suffisamment rapide. Cependant, des Microspora et autres protozoaires récemment découverts et encore à découvrir pourront éventuellement offrir une solution alternative fiable et de nature non chimique dans la lutte contre les criquets. La recherche sur des organismes tels que Nosema locustae n'a pas été vaine, puisque la recherche de méthodes de préparation, d'application, d'évaluation et d'analyse des effets écologiques de tels agents potentiels a au moins permis de poser des bases solides dans l'éventualité de la découverte de protozoaires d'efficacité plus immédiate, et a contribué à la mise au point des méthodes d'application requises pour éprouver d'autres agents microbiens. La meilleure compréhension du comportement des insectes et de leurs réactions physiologiques, de même que l'obtention d'une efficacité satisfaisante à court terme (peut-être par combinaison de différentes préparations à des modificateurs du comportement ou à des agents de stress) pourront peut-être permettre à des organismes tels que N. locustae, Henry, N. cuneatum Henry, N. acridophagus ou Johenrea locustae Lange et al. de limiter l'abondance et l'activité des criquets en jouant le rôle d'agent de lutte biologique en des endroits particulièrement fragiles ou dans le contexte de programmes de lutte intégrée (IPM). [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G.L. 1983. Parasites of locusts and grasshoppers. Agfact AE.2. pp. 116.Google Scholar
Bidochka, M.J. and Khachatourians, G.G.. 1991. Review article: Microbial and protozoan pathogens of grasshoppers and locusts as potential biocontrol agents. Biocontrol Science and Technology 1: 243259.Google Scholar
Bomar, C.R., Lockwood, J.A., Pomerinke, M.A. and French, J.D.. 1993. Multiyear evaluation of the effects of Nosema locustae (Microsporida: Nosematidae) on rangeland grasshopper (Orthoptera: Acrididae) population density and natural biological controls. Environmental Entomology 22: 489497.Google Scholar
Boorstein, S.M. and Ewald, P.. 1987. Costs and benefits of behavioral fever in Melanoplus sanguinipes infected by Nosema acridophagus. Physiological Zoology 60: 586595.Google Scholar
Braun, L., Ewen, A.B. and Gillott, C.. 1988. The life cycle of Malameba locustae (King and Taylor) (Amoebidae) in the migratory grasshopper Melanoplus sanguinipes (F.) (Acrididae). The Canadian Entomologist 120: 759772.Google Scholar
Brooks, W.M. 1988. Entomogenous protozoa, pp. 1149in Ignoffo, C.M. (Ed.), CRC Handbook of Natural Pesticides. Vol V. Microbial Insecticides. Part A. Entomogenous Protozoa and Fungi. CRC Press.Google Scholar
Canning, E.U. 1953. A new microsporidian, Nosema locustae n. sp., from the fat body of the African migratory locust, Locusta migratorioides R. & F. Parasitology 43: 287290.Google Scholar
Canning, E.U. 1962 a. The life cycle of Nosema locustae Canning in Locusta migratoria migratorioides (Reiche and Fairmaire), and its infectivity to other hosts. Journal of Insect Pathology 4: 237247.Google Scholar
Canning, E.U. 1962 b. The pathogenicity of Nosema locustae Canning. Journal of Insect Pathology 4: 248256.Google Scholar
Cantwell, G.E. 1970. Standard methods for counting Nosema spores. American Bee Journal June 1970: 222223.Google Scholar
Capinera, J.L. and Hibbard, B.E.. 1987. Bait formulations of chemical and microbial insecticides for suppression of crop-feeding grasshoppers. Journal of Agricultural Entomology 4: 337344.Google Scholar
Carey, J.R. 1989. The multiple decrement life table: A unifying framework for cause-of-death analysis. Oecologia 78: 131137.Google Scholar
Caudwell, R.W. 1993. Bait formulation of microbial agents for grasshopper control. Biocontrol News and Information 14: 5357.Google Scholar
Engler, R. and Rogoff, M.H.. 1980. Registration and regulation of microbial pesticides. Biotechnology and Bioengineering 22: 14411448.Google Scholar
Erlandson, M.A., Mukerji, M.K., Ewen, A.B. and Gillott, C.. 1985. Comparative pathogenicity of Nosema acridophagus Henry and Nosema cuneatum Henry (Microsporida: Nosematidae) for Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae). The Canadian Entomologist 117: 11671175.Google Scholar
Erlandson, M.A., Ewen, A.B., Mukerji, M.K. and Gillott, C.. 1986. Susceptibility of immature stages of Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae) to Nosema cuneatum Henry (Microsporida: Nosematidae) and its effect on host fecundity. The Canadian Entomologist 118: 2935.Google Scholar
Ewen, A.B. 1986. Development of in vitro techniques for mass production of infective spores of Nosema locustae Canning (Microsporida) to be used in the management of grasshopper populations in rangeland, cereal crops, and forage crop seed fields in western Canada. Farming for the Future Project No. 79-0090.Google Scholar
Ewen, A.B. and Mukerji, M.K.. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Invertebrate Pathology 35: 295303.Google Scholar
Goettel, M.S. and Jaronski, S.T.. 1997. Safety and registration of raicrobial control agents of grasshoppers and locusts, pp. 83–99 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Habtewold, T., Landin, J., Wennergen, U. and Bergman, K.O.. 1995. Life table for the Tef grasshopper, Aiolopus longicornis, under laboratory conditions and demographic effects of the pathogen Nosema locustae. Biological Control 5: 497502.Google Scholar
Harry, O.G. 1970. Gregarina: Their effect on growth in the desert locust (Schistocerca gregaria). Nature 225: 964–66.Google Scholar
Henry, J.E. 1967. Nosema acridophagus sp.n., a microsporidian isolated from grasshoppers. Journal of Invertebrate Pathology 9: 331341.Google Scholar
Henry, J.E. 1969 a. Extension of the host range of Nosema locustae in Orthoptera. Annals of the Entomological Society of America 62: 452453.Google Scholar
Henry, J.E. 1969 b. Early morphogenesis of tumors induced by Nosema acridophagus in Melanoplus sanguinipes. Journal of Invertebrate Pathology 15: 391394.Google Scholar
Henry, J.E. 1971 a. Experimental application of Nosema locustae for control of grasshoppers. Journal of Invertebrate Pathology 18: 389394.Google Scholar
Henry, J.E. 1971 b. Nosema cuneatum sp. n. (Microsporida: Nosematidae) in grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 17: 164171.Google Scholar
Henry, J.E. 1972. Epizootiology of infections by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111120.Google Scholar
Henry, J.E. 1981. Natural and applied control of insects by protozoa. Annual Review of Entomology 26: 4973.Google Scholar
Henry, J.E. 1985. Effect of grasshopper species, cage density, light intensity, and method of inoculation on mass production of Nosema locustae (Microsporida: Nosematidae). Journal of Economic Entomology 78: 12451250.Google Scholar
Henry, J.E. 1990. Control of insects by protozoa, pp. 161–176 in New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases. A.R. Liss, Inc., NY. 837 pp.Google Scholar
Henry, J.E., Fowler, J.L., Wilson, M.C. and Onsager, J.A.. 1985. Infection of West African grasshoppers with Nosema locustae Canning (Protozoa: Microsporida: Nosematidae). Tropical Pest Management 31: 144147.Google Scholar
Henry, J.E. and Oma, E.A.. 1974. Effect of prolonged storage of spores on field applications of Nosema locustae (Microsporida: Nosematidae) against grasshoppers. Journal of Invertebrate Pathology 23: 371377.Google Scholar
Henry, J.E. and Oma, E.A.. 1975. Sulphonamide antibiotic control of Malameba locustae (King &Taylor) and its effect on grasshoppers. Acrida 4: 217226.Google Scholar
Henry, J.E. and Oma, E.A.. 1981. Pest Control by Nosema locustae, a pathogen of grasshoppers and crickets. pp. 573586in Burges, H.D. (Ed.), Microbial Control of Pest and Plant Diseases 1970-1980. Academic Press, New York, NY.Google Scholar
Henry, J.E., Oma, E.A. and Onsager, J.A.. 1978. Relative effectiveness of ULV spray applications of spores of Nosema locustae against grasshoppers. Journal of Economic Entomology 71: 629632.Google Scholar
Henry, J.E., Oma, E.A., Onsager, J.A. and Oldacre, S.W.. 1979. Infection of the corn earworm, Heliothis zea, with Nosema acridophagus and Nosema cuneatum from grasshoppers: Relative virulence and production of spores. Journal of Invertebrate Pathology 34: 125132.Google Scholar
Henry, J.E. and Onsager, J.A.. 1982 a. Experimental control of the Mormon cricket, Anabrus simplex, by Nosema locustae (Microspora: Microsporida), a protozoan parasite of grasshoppers (Ort: Acrididae). Entomophaga 27: 197201.Google Scholar
Henry, J.E. and Onsager, J.A.. 1982 b. Large-scale test of control of grasshoppers on rangeland with Nosema locustae. Journal of Economic Entomology 75: 3135.Google Scholar
Henry, J.E., Tiahrt, K. and Oma, E.A.. 1973. Importance of timing, spore concentrations, and levels of spore carrier in applications of Nosema locustae (Microsporida: Nosematidae) for control of grasshoppers. Journal of Invertebrate Pathology 21: 263272.Google Scholar
Higley, L.G. and Wintersteen, W.K.. 1992. A novel approach to environmental risk assessment of pesticides as a basis for incorporating environmental costs into economic injury levels. American Entomologist 38: 3439.Google Scholar
Hinks, C.F. and Ewen, A.B.. 1986. Pathological effects of the parasite Malameba locustae in males of the migratory grasshopper Melanoplus sanguinipes and its interaction with the insecticide, cypermethrin. Entomologia Experimentalis et Applicata 42: 3944.Google Scholar
Inglis, G.D., Johnson, D.L. and Goettel, M.S.. 1996. Effect of bait substrate and formulation on infection of grasshopper nymphs by Beauveria bassiana. Biocontrol Science and Technology 6: 3550.Google Scholar
Isman, M.B., Feng, R. and Johnson, D.L.. 1996. Detoxicative enzyme activities in five species of field-collected melanopline grasshoppers (Orthoptera: Acrididae). The Canadian Entomologist 128: 353354.Google Scholar
Jackson, L.L., Baker, G.L. and Henry, J.E.. 1968. Effect of Malamoeba locustae infection on the egg lipids of the grasshopper Melanoplus bivitattus. Journal of Insect Physiology 14: 17731778.Google Scholar
Jaronski, S.T. and Goettel, M.S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts. pp. 225–237 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jenkins, N.E. and Goettel, M.S.. 1997. Methods for mass production of microbial control agents of grasshoppers and locusts, pp. 37–48 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. 1987. Evaluation of grasshopper control with Nosema locustae and insecticide on bran carrier. Final Report, Agricultural Research Council of Alberta. Farming for the future. Grant No. 84-0418, 41 pp.Google Scholar
Johnson, D.L. 1989. The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 54: 353362.Google Scholar
Johnson, D.L. 1992. Ecology, biology, field experimentation and environmental impact, pp. 276278in Lomer, C. & Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. Published separately as: Biologie, écologie, essais sur le terrain et impact sur l'environnement. Dans Lutte biologique contre les acridiens, préeparé par C. Lomer et C. Prior, pp. 269–280. CAB International, Wallingford, UK, et CIDA/ACDI, Hull, Canada.Google Scholar
Johnson, D.L. 1995. Grasshopper species collected from the Canadian Forces Base Suffield Wildlife Area in 1994. Requested report submitted to the Canadian Wildlife Service and the Canada Department of National Defense. 15 pp.Google Scholar
Johnson, D.L. and Dolinski, M.G.. 1997. Attempts to increase the prevalence and severity of infection of grasshoppers with the entomopathogen Nosema locustae Canning (Microsporida: Nosematidae) by repeated field application, pp. 391–400 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400.Google Scholar
Johnson, D.L. and Henry, J.E.. 1984. Degree of infection of grasshoppers by Nosema locustae, cultured in vivo and formulated with wheat bran. Expert Committee on Pesticide Use in Agriculture. Pesticide Research Report, p. 187.Google Scholar
Johnson, D.L. and Henry, J.E.. 1987. Low rates of insecticides and Nosema locustae (Microsporida: Nosematidae) on baits applied to roadsides for grasshopper (Orthoptera: Acrididae) control. Journal of Economic Entomology 80: 685689.Google Scholar
Johnson, D.L., Henry, J.E., Dolinski, M.G. and Jones, J.W.. 1984. Application of Nosema locustae for grasshopper control. Expert Committee on Pesticide Use in Agriculture, Pesticide Research Report.Google Scholar
Johnson, D.L., Martin, P.A., Forsyth, D.J. and Hill, B.D.. 1996. Adjusting grassland insect control to allow survival of grassland songbirds. Final report submitted to CAESA, the Canada-Alberta Environmentally Sustainable Agriculture Agreement committee. 65 pp.Google Scholar
Johnson, D.L. and Pavlikova, E.. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.Google Scholar
Kemp, W.P. 1986. Thermoregulation in three rangeland grasshopper species. The Canadian Entomologist 118: 335343.Google Scholar
King, R.L. and Taylor, A.B.. 1936. Malpighamoeba locustae sp. n. (Amoebidae), a protozoan parasitic in the Malpighian tubes of grasshoppers. Transactions of the American Microscopists Society 55: 610.Google Scholar
Knoblett, J.N. and Youssef, N.N.. 1996. Detection of Nosema locustae in frozen grasshoppers (Orthoptera: Acrididae) by using monoclonal antibodies. Journal of Economic Entomology 89: 841847.Google Scholar
Krall, S. and Knausenberger, W.. 1992. Efficacy and environmental impact for biological control of Nosema locustae on grasshoppers in Cape Verde, a synthesis report. Report for Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), Eschborn, Germany. 16 pp.Google Scholar
Krogh, A. and Weis-Fogh, T.. 1952. A roundabout for studying sustained flight of locusts. Journal of Experimental Biology 29: 211219.Google Scholar
Lactin, D.J. and Johnson, D.L.. 1996. Effects of insolation and body orientation on internal thoracic temperature of nymphal Melanoplus packardii (Orthoptera: Acrididae). Environmental Entomology 25: 423429.Google Scholar
Lactin, D.J. and Johnson, D.L.. 1997. Response of body temperature to solar radiation in restrained nymphal migratory grasshoppers (Orthoptera: Acrididae): Influences of orientation and body size. Physiological Entomology 22: 131139.Google Scholar
Lange, D.E. 1987. Histopathology in the malpighian tubules of Dichroplus elongatus (Orthoptera: Acrididae) infected with Perezia dichroplusae (Microspora: Pereziidae). Journal of Invertebrate Pathology 50: 146150.Google Scholar
Lange, C.E., Brito, J.M. and Henry, J.E.. 1992. Characteristics of a microsporidium (Protozoa: Microspora) infecting grasshoppers (Orthoptera: Pyrgomorphidae) in Cape Verde, Africa. Journal of Protozoology 39: 494498.Google Scholar
Lange, C.E. and De Wysiecki, M.L.. 1996. The fate of Nosema locustae (Microsporida: Nosematidae) in Argentine grasshoppers (Orthoptera: Acrididae). Biological Control 7: 2429.Google Scholar
Lange, C.E., MacVean, C.M., Henry, J.E. and Streett, D.A.. 1995. Heterovesicula cowani n.g. n. s.p. (Hetero vesiculidae N. Fam.), a microsporidian parasite of Mormon crickets, Anabrus simplex Haldeman, 1852 (Orthoptera: Tettigonidae). Journal of Eukaryotic Microbiology 42: 552558.Google Scholar
Lange, C.E., Becnel, J.J., Razafindratiana, E., Przybyszewski, J. and Razafindrafara, H.. 1996. Johenrea locustae n.g., n. sp. (Microspora: Glugeidae), a pathogen of migratory locusts (Orthoptera: Acrididae: Oedipodinae) from Madagascar. Journal of Invertebrate Pathology 68: 2840.Google Scholar
Levine, N.D. 1988. The Protozoan Phylum Apicomplexa. Volume I. CRC Press, Boca Raton.Google Scholar
Lockwood, J.A. 1988. Cannibalism in rangeland grasshoppers (Orthoptera: Acrididae): Attraction to cadavers. Journal of the Kansas Entomological Society 61: 379387.Google Scholar
Lockwood, J.A. 1989. Ontogeny of cannibalism in rangeland grasshoppers (Orthoptera: Acrididae). Journal of the Kansas Entomological Society 62: 534541.Google Scholar
Lockwood, J.A. 1993. Environmental issues involved in biological control of rangeland grasshoppers (Orthoptera: Acrididae) with exotic agents. Environmental Entomology 22: 503518.Google Scholar
Lockwood, J.A. and Debrey, L.D.. 1990. Direct and indirect effects of large-scale application of Nosema locustae (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). Journal of Economic Entomology 83: 377383.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400.Google Scholar
Long, Z., Yan, Y., Zang, Z. and Yang, Z.. 1996. A preliminary survey of the epizootics of infection by Nosema locustae in grasshoppers on rangeland in Inner Mongolia, China. Submitted abstract, Technology transfer in biological control: From research to practice. Montpellier, France, 9–11 Sept, 1996.Google Scholar
Maddox, J.V. 1987. Protozoan Diseases, pp. 417452in Fuxa, J.R. and Tanada, Y. (Eds.), in Epizootiology of Insect Diseases. John Wiley and Sons, New York, NY.Google Scholar
Martin, P.A., Johnson, D.L., Forsyth, D.J. and Hill, B.D.. 1997. Indirect effects of the pyrethroid insecticide, deltamethrin on reproductive success of Chestnut-collared Longspurs. Ecotoxicology (in press)Google Scholar
Mason, P.G. and Erlandson, M.A.. 1994. The potential of biological control for management of grasshoppers (Orthoptera: Acrididae) in Canada. The Canadian Entomologist 126: 14591491.Google Scholar
McLaughlin, R.E. 1971. Use of protozoa for microbial control of insects, pp. 151–172 in Burges, H.D. and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York, NY. 861 pp.Google Scholar
Menapace, D.M., Sackett, R.R. and Wilson, W.T.. 1978. Adult honey bees are not susceptible to infection by Nosema locustae. Journal of Economic Entomology 71: 3047–306.Google Scholar
Meneley, J.C. and Sluss, T.P.. 1988. Development of ‘NOLO Bait’ (Nosema locustae) for the control of grasshoppers and locusts. Brighton Crop Protection Conference — Pests and Diseases 2: 597602.Google Scholar
Morris, O.N. 1985. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae) to mixtures of Nosema locustae (Microsporida: Nosematidae) and chemical insecticides. The Canadian Entomologist 117: 131132.Google Scholar
Moulden, J.H. and D'Antuono, M.F.. 1984. Evaluation of Nosema locustae for the control of wingless grasshoppers (Phaulacridium spp) in western Australia in Proceedings of the Fourth Australian Applied Entomological Research Conference — September 1984. Bailey, P. and Swinger, D., (Eds.)Google Scholar
Mussgnug, G.L. 1980. Integration of Nosema locustae with chemical insecticides and entomopoxvirus for control of grasshoppers. Dissertation Abstracts 41: 1233–B.Google Scholar
Mussgnug, G.L. and Henry, J.E.. 1979. Compatibility of malathion and Nosema locustae Canning in Melanoplus sanguinipes (F.) Acrida 8: 7781.Google Scholar
Oma, E.U. and Hewitt, G.B.. 1984. Effect of Nosema locustae (Microsporida: Nosematidae) on food consumption in differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology 77: 500501.Google Scholar
O'Neill, K.M.Woods, S., Streett, D. and O'Neill, R.P.. 1993. Aggressive interactions and feeding success of scavenging grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 751758.Google Scholar
Onsager, J.A., Henry, J.E., Foster, R.N. and Staten, R.T.. 1980. Acceptance of wheat bran bait by species of rangeland grasshoppers. Journal of Economic Entomology 73: 548551.Google Scholar
Onsager, J.A., Rees, N.E., Henry, J.E. and Foster, R.N.. 1981. Integration of bait formulations of Nosema locustae and carbaryl for control of rangeland grasshoppers. Journal of Economic Entomology 74: 183187.Google Scholar
Pedigo, L.P. and Higley, L.G.. 1992. The economic injury level concept and environmental quality. American Entomologist 38: 1221.Google Scholar
Pickford, R. and Randell, R.L.. 1969. A non-diapause strain of the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). The Canadian Entomologist 101: 894896.Google Scholar
Raina, S.K. and Ewen, A.B.. 1979. In vitro infection of the fat body cells of the grasshopper Melanoplus sanguinipes (Fab.) by the microsporidian Nosema locustae Canning. Proceedings of the Vth International Conference on Invertebrate Tissue Culture, Developments and Applications, Rigi Kaltbad, Switzerland.Google Scholar
Raina, S.K., Rai, M.M. and Khurad, A.M.. 1987. Grasshopper and locust control using microsporidian insecticides. pp. 345365in Maramorosch, K. (Ed.), Biotechnology in Invertebrate Pathology and Cell Culture. Academic Press, San Diego, CA.Google Scholar
Sánchez, N.E. and De Wysiecki, M.L.. 1990. Quantitative evaluation of feeding activity of the grasshopper Dichroplus pratensis (Orthoptera: Acrididae) in a natural grassland of La Pampa, Argentina. Environmental Entomology 19: 13921395.Google Scholar
Schaalje, G.B., Charnetski, W.A. and Johnson, D.L.. 1986. A comparison of estimators of the degree of insect control. Communications in Statistics — Theory and Methods, Simulation and Computation 15: 10651086.Google Scholar
Schaalje, G.B., Johnson, D.L. and Van der Vaart, H.R.. 1992. Application of competing risks theory to the analysis of effects of Nosema locustae and N. cuneatum on development and mortality of migratory locusts. Environmental Entomology 21: 939948.Google Scholar
Seamans, F. 1939. Protozoan parasites of the Orthoptera, with special reference to those of Ohio. II. Description of the protozoan parasites recognized in this study. Ohio Journal of Science 39: 157181.Google Scholar
Seamans, F. 1943. Protozoan parasites of the Orthoptera, with special reference to those of Ohio. IV. Classified list of the protozoan parasites of the Orthoptera of the world. Ohio Journal of Science 43: 221–234, 271276.Google Scholar
Srivastava, Y.N. and Bhanotar, R.K.. 1985. Susceptibility and bioassay of Nosema locustae Canning against adults of desert locust Schistocerca gregaria (Forskal). Indian Journal of Entomology 47: 295299.Google Scholar
Srivastava, Y.N. and Bhanotar, R.K.. 1986. Laboratory studies on effect of protozoan pathogen Nosema locustae Canning against eggs and hoppers of desert locust. Indian Journal of Entomology 48: 420427.Google Scholar
Steinhaus, E.A. 1946. Insect microbiology, an account of the microbes associated with insects and ticks with special reference to the biologic relationships involved. Comstock Publishing Company, Inc., Ithaca, New York. 763 pp.Google Scholar
Steinhaus, E.A. 1951. Report on diagnoses of diseased insects 1944–1950. Hilgardia 20: 629678.Google Scholar
Streett, D.A. 1994. Analysis of Nosema locustae (Microsporida: Nosematidae) chromosomal DNA with pulsed-field gel electrophoresis. Journal of Invertebrate Pathology 63: 301303.Google Scholar
Streett, D.A. and Henry, J.E.. 1984. Epizootiology of a microsporidium in field populations of Aulocara elliotti and Psoloessa delicatula (Insecta: Orthoptera). The Canadian Entomologist 116: 14391440.Google Scholar
Streett, D.A. and McGuire, M.R.. 1988. Microbial control of rangeland grasshoppers: New techniques for the detection of entomopathogens. Montana Agricultural Research 5: 15.Google Scholar
Streett, D.A. and McGuire, M.R.. 1990. Pathogenic diseases of grasshoppers, pp. 483516in Chapman, R.F. and Joern, A. (Eds.), Biology of Grasshoppers. John Wiley and Sons, Inc.Google Scholar
Streett, D.A., Woods, S.A. and Onsager, J.A.. 1993. Vertical transmission of a Nosema sp. (Microsporida: Nosematidae) infecting a grasshopper, Chorthippus curtipennis (Orthoptera: Acrididae). Environmental Entomology 22: 10311034.Google Scholar
Toguebaye, B.S., Seek, A. and Marchand, B.. 1988. Histopathologie et ultrastructure de Nosema pygomorphae n. sp. (Microspora: Nosematidae) parasite de Pygomorpha conica tereticornis (Orthoptera: Pyrgomorphidae). Arch. Protistenkd. 136: 283292.Google Scholar
Undeen, A.H. and Cockburn, A.F.. 1989. The extraction of DNA from microsporidia spores. Journal of Invertebrate Pathology 54: 132133.Google Scholar
van der Paauw, H., Johnson, D.L. and Maiga, B.. 1990. Evaluation of a large-scale application of Nosema locustae bait against grasshoppers in the Malian Sahel. Report to the U.S. Agency for International Development, Service Nationale de la Protection des Végétaux, Mali, and Ciba-Geigy AG, Basel. 116 pp.Google Scholar
Venter, I.G. 1966. Egg development of the brown locust, Locustana pardalina (Walker) with special reference to the effect of infestations by Malameba locustae. South African Journal of Agricultural Science 9: 429434.Google Scholar
Wang, L.Y., Cao, C., Yu, X., Abudu, W. and Yang, C.. 1994. Effects of the control of grasshoppers in Xinjiang rangeland by using Nosema locustae bran bait with different formulation. Chinese Journal of Biological Control 10: 123125.Google Scholar
Wang, L.Y., Streett, D.A. and Henry, J.E.. 1991. Nosema montanae n. sp. (Microsporida: Nosematidae), a parasite from the grasshopper Melanoplus packardii (Orthoptera: Acrididae). Journal of Invertebrate Pathology 58: 211218.Google Scholar
Watts, J.G., Huddleston, E.W. and Owens, J.C.. 1982. Rangeland entomology. Annual Review of Entomology 27: 283311.Google Scholar
Whitlock, V.H. and Brown, S.T.. 1991. First record for Nosema locustae in the brown locust Locustana pardalina in South Africa, and the yield of spores in laboratory bioassays. Journal of Invertebrate Pathology 58: 164167.Google Scholar
Yan, Y. 1996. Pers. comm. from Chinese Agricultural University, Laboratory of Biological Control, Department of Entomology.Google Scholar
Yan, Y., Wang, G., Yu, X., Li, S. and Zhang, L.. 1996. The integrated control of locusts and grasshoppers using Nosema locustae bait with the mixture of IGR bait in China. Submitted abstract, Technology transfer in biological control: From research to practice. Montpellier, France, 9–11 Sept, 1996.Google Scholar
Zuk, M. 1987. The effects of gregarine parasites on longevity, weight loss, fecundity and developmental time in the field crickets Gryllus veletis and G. pennsylvanicus. Ecological Entomology 12: 349354.Google Scholar