Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T07:39:17.807Z Has data issue: false hasContentIssue false

Sur l’usinabilité des composites à matrices polymères renforcéepar des fibres

Published online by Cambridge University Press:  15 September 2010

Francisco Mata Cabrera*
Affiliation:
École universitaire polytechnique d’Almaden, Place Manuel Meca, 1, 13400, Almaden Ciudad Real, Espagne
Issam Hanafi
Affiliation:
Faculté des Sciences, M’hannech II, BP 2121, Tétouan, Maroc
Abdellatif Khamlichi
Affiliation:
Faculté des Sciences, M’hannech II, BP 2121, Tétouan, Maroc
Abdallah Jabbouri
Affiliation:
Faculté des Sciences et Techniques, Ancienne Route de l’Aéroport, Km 10, BP 416, Tanger, Maroc
Mohamed Bezzazi
Affiliation:
Faculté des Sciences et Techniques, Ancienne Route de l’Aéroport, Km 10, BP 416, Tanger, Maroc
*
aAuteur pour correspondance :[email protected]
Get access

Abstract

Une revue bibliographique étendue est réalisée sur le thème de l’usinabilité descomposites à matrice polymère renforcée par des fibres, dans le but de fournir desrésultats et conclusions sur l’usinage des matériaux composites à matrice thermoplastiqueet à fibres courtes. Un rappel sur l’état de l’art dans ce domaine, sur les spécificitésliées à l’usinage des composites organiques et sur les différents modèles ayant étéintroduits pour prédire les paramètres de coupe a été effectué. Les paramètres affectantl’usinabilité proprement dite des composites ont été revus, ensuite une richebibliographie sur le sujet est présentée. Enfin les critères d’usinage ont été présentéssous forme synthétique en considérant les différentes contributions développées dans cedomaine et, de manière presque exhaustive, toutes les références bibliographiquessignificatives ayant traité de ce sujet.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Petropoulos, G., Pandazaras, C., Evaluating the real profile length in turning of carbon steels, Ind. Lubr. Tribol. 55 (2003) 128136CrossRefGoogle Scholar
Bhatnagar, N., Ramakrishnan, N., Naik, N.K., On the machining of fiber reinforced plastics (FRP) composite laminates, Int. J. Mach. Tool. Manuf. 35 (1995) 701716CrossRefGoogle Scholar
Voss, H., Friedrich, K., On the wear behaviour of short-fibre-reinforced PEEK composites, Wear 116 (1987) 118CrossRefGoogle Scholar
Krishnamurthy, R., Santhanakrishnan, G., Malhotra, S.K., Machining of Polymeric composites, Proceedings of the Machining of Composite Materials Symposium, ASM Materials Week (1992) 139148 Google Scholar
Rahman, M., Ramakrishna, S., Prakash, J.R.S., Tan, D.C.G., Machinability study of carbon fiber reinforced composite, J. Mat. Proc. Technol. 89–99 (1999-a) 292297 CrossRefGoogle Scholar
Rahman, M., Ramakrisna, S., Thoo, H.C., Machinability study of carbon/PEEK composites, Machin. Science Technology 3 (1999-b) 4959 CrossRefGoogle Scholar
Komanduri, R., Machining fiber-reinforced composites, Mech. Eng. 115 (1993) 5864Google Scholar
Lu, Z., Yoneyama, T., Micro cutting in the micro lathe turning system, Int. J. Mach. Tool. Manuf. 339 (1999) 11711183CrossRefGoogle Scholar
Picard, Y.N., Adams, D.P., Vasile, M.J., Ritchey, M.B., Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components, Precision Engineering 27 (2003) 5969CrossRefGoogle Scholar
A. Spencer, Deformations of fiber-reinforced materials, Clarendon Press, Oxford, 1972
Arola, D., Ramulu, M., Orthogonal cutting of fiber-reinforced composites: A finite element analysis, Int. J. Mech. Sci. 39 (1997) 597613CrossRefGoogle Scholar
Caprino, G., Tagliaferri, V., Damage development in drilling glass-fiber-reinforced plastics, Int. J. Mach. Tool. Manuf. 35 (1995) 817829CrossRefGoogle Scholar
Caprino, G., Santo, L., Nele, L., Interpretation of size effect in orthogonal machining of composite materials. Part I: Unidirectional glass-fiber-reinforced plastics, Composites part A – Applied Science and Manufacturing 29 (1998) 887892CrossRefGoogle Scholar
Mathew, J., Ramakrishnan, N., Naik, N.K., Investigations into the effect of geometry of a trepanning tool on thrust and torque during drilling of GFRP composites, J. Mat. Proc. Tech. 91 (1999-a) 111 CrossRefGoogle Scholar
Mathew, J., Ramakrishnan, N., Naik, N.K., Trepanning on unidirectional composites: delamination studies, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing) 30 (1999-b) 951959 CrossRefGoogle Scholar
M.P. Groover, Fundamentals of Modern Manufacturing Materials, Process and Systems, Prentice Hall International Editions, 1996
An, S.O., Lee, E.S., Noh, S.L., A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries, J. Mat. Proc. Technol. 68 (1997) 6067CrossRefGoogle Scholar
Ferreira, J.R., Coppini, N.L., Levy Neto, F., Characteristics of carbon-carbon composite turning, J. Mat. Proc. Technol. 109 (2001) 6571CrossRefGoogle Scholar
Hocheng, H., Tsao, C.C., The path towards delamination-free drilling of composite materials, J. Mat. Proc. Technol. 167 (2005) 251264CrossRefGoogle Scholar
Hocheng, H., Tsao, C.C., Effects of special drill bits on drilling-induced delamination of composite materials, Int. J. Mach. Tool. Manuf. 46 (2006) 14031416CrossRefGoogle Scholar
Koplev, A., Lystrup, A., Vorm, T., process, The cuttin., chips and cutting forces in machining CFRP, Composites 14 (1983) 371376CrossRefGoogle Scholar
Chang, C.S., Turning of glass-fiber reinforced plastics materials with chamfered main cutting edge carbide tools, J. Mat. Proc. Technol. 180 (2006) 117129CrossRefGoogle Scholar
Everstine, G.C., Rogers, T.G., A Theory of Machining of Reinforced Materials, J. Composi. Mater. 5 (1971) 94106CrossRefGoogle Scholar
A. Koplev, Cutting of CFRP with single edge tools, 3rd International Conference on composite Materials, Paris, 1980
Sakuma, K., Seto, M., Tool wear in cutting glass-fiber-reinforced plastics. The relation between fiber orientation and tool wear, Bull. JSME 26 (1983) 14201427CrossRefGoogle Scholar
Takeyama, H., Iijima, N., Machinability of glass fiber reinforced plastics and applications of ultrasonic machining, Annals CIRP 37 (1988) 9396CrossRefGoogle Scholar
Ramesh, M., Seetharamu, K., Ganesan, N., Sivakumar, M., Analysis of machining of FRPs using FEM, Int. J. Mach. Tool. Manuf. 38 (1998) 15311549CrossRefGoogle Scholar
Ribeiro, M.V., Coppini, N.L., An applied database system for the optimisation of cutting conditions and tool selection, J. Mat. Proc. Technol. 92–93 (1999) 371374CrossRefGoogle Scholar
Mahdi, M., Zhang, L., An adaptive three-dimensional finite element algorithm for the orthogonal cutting of composite materials, J. Mat. Proc. Technol. 113 (2001-a) 368372 CrossRefGoogle Scholar
Mahdi, M., Zhang, L., A finite element model for the orthogonal cutting of fiber-reinforced composite materials, J. Mat. Proc. Technol. 113 (2001-b) 373377 CrossRefGoogle Scholar
Wang, X.M., Zhang, L.C., Orthogonal cutting mechanisms of graphite/epoxy composite. Part I: unidirectional laminate, Int. J. Mach. Tool. Manuf. 35 (1995-a) 16231638 CrossRefGoogle Scholar
Wang, X.M., Zhang, L.C., Orthogonal cutting mechanisms of graphite/epoxy composite. Part II: multi-directional laminate, Int. J. Mach. Tool. Manuf. 35 (1995-b) 16391648 CrossRefGoogle Scholar
Kaneeda, T., CFRP cutting mechanism, Trans. Amer. Manufacturing Res. Inst. SME 19 (1991) 216221Google Scholar
G. Byrne, U.E. Wunsch, Composite materials in manufacturing engineering, Technical development and applications, NBST (1986)
Ramulu, M., Kim, D., Choi, G., Frequency analysis and characterization in orthogonal cutting of glass fiber reinforced composites, Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing) 183 (2003) 949962CrossRefGoogle Scholar
Ramulu, M., Kuo, S.-Y., Chen, Y.-M., Kim, D., Spitsen, R., Cutting characteristics of preform and SMC composites, Transactions of the North American Manufacturing Research Institute of SME 32 (2004) 239246Google Scholar
El-Sonbaty, U.A., Khashaba, T., Machaly, T., Factors affecting the machinability of GFR/epoxy composites, Compos. Struct. 63 (2004) 329338CrossRefGoogle Scholar
Ferreira, J.R., Coppini, N.L., Miranda, G.W.A., Machining optimisation in carbon fiber reinforced composite materials, J. Mat. Proc. Technol. 92 (1999) 135140CrossRefGoogle Scholar
Yang, W.H., Tarng, Y.S., Design optimization of cutting parameters for turning operations based on the Taguchi Method, J. Mat. Proc. Technol. 84 (1998) 122129CrossRefGoogle Scholar
Varatharajan, R., Malhotra, S.K., Vijayaraghavan, L., Krishnamurthy, R., Mechanical and machining characteristics of GF/PP and GF/Polyester composites, Materials Science and Engineering B 132 (2006) 134137CrossRefGoogle Scholar
Eriksen, E., Influence from production parameters on the surface roughness of a machined short fibre reinforced thermoplastic, Int. J. Mach. Tool. Manuf. 39 (1999) 16611618CrossRefGoogle Scholar
Lee, B.Y., Tarng, Y.S., Lii, H.R., An Investigation of Modelling of the Machining Database in Turning Operations, J. Mat. Proc. Technol. 105 (2000) 16CrossRefGoogle Scholar
Sreejith, P.S., Krishnamurthy, R., Malhota, S.K., Narayanasamy, K., Evaluation of PCD tool performance during machining of carbon/phenolic ablative composites, J. Mat. Proc. Technol. 104 (2000) 5358CrossRefGoogle Scholar
Sardinas, R.Q., Reis, P., Davim, J.P., Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms, Composites Science and Technology 66 (2006) 30833088CrossRefGoogle Scholar
Sang-Olk, A., Eun-Sang, L., Sang-Lay, N., A study on the cutting characteristics of glass fiber reinforced plastics with respect to tool materials and geometries, J. Mat. Proc. Technol. 68 (1997) 6067Google Scholar
Bernardos, P.G., Vosniakos, C.G., Predicting surface roughness in machining: a review, Int. J. Mach. Tool. Manuf. 43 (2003) 833844CrossRefGoogle Scholar
Reineck, I., Sjöstrand, M.E., Karner, J., Pedrazzini, M.., Diamond coated cutting tools, Int. J. Refractory Metals and Hard Materials (1996) 187193 CrossRefGoogle Scholar
Bai, Q.S., Tao, Y.X., Bex, P., Zhang, G., Study on wear mechanisms and grain effects of PCD tool in machining laminated flooring, Int. J. Refractory Metals and Hard Materials 22 (2004) 111115CrossRefGoogle Scholar
Chambers, A., Bishop, G., The drilling of carbon fibre polymer matrix composites, Processing and Manufacturing 3 (1995) 565572Google Scholar
S. Jahanmir, M. Ramulu, P. Koshy, Machining of ceramics and composites, Marcel Dekker Inc., 1998, pp. 238–243
Faure, C., Hänni, W., Schmutz, C.J., Gervanoni, M., Diamond-coated tools, Diam. Rel. Mat. 8 (1999) 830833CrossRefGoogle Scholar
Sheikh-Ahmad, J.Y., Stewart, J.S., Feld, H., Failure characteristics of diamond-coated carbides in machining wood-based composites, Wear 255 (2003) 14331437CrossRefGoogle Scholar
Belmonte, M., Oliveira, F.J., Lanna, M.A., Silva, C.M., Corat, E.J., Silva, R.F., Turning of CFRC composites using Si3N4 and thin CVD diamond coated Si3N4 tools, Materials Science Forum 455-456 (2004) 609613CrossRefGoogle Scholar
Olsen, R.H., Dewes, R.C., Aspinwall, D.K., Machining of electrically conductive CVD diamond tool blanks using EDM, J. Mat. Proc. Technol. 149 (2004) 627632CrossRefGoogle Scholar
Sussmann, R.S., Brandon, J.R., Coe, S.E., Pickles, C.S.J., Sweeney, C.G., Wasenczuk, A., Wort, C.J.H., Dodge, C.N., CVD diamond: new engineering material for thermal, dielectric and optical applications, Ind. Diamond Rev. 3 (1998) 6977Google Scholar
S. Kalpakjian, S.R. Schmid, Manufactura, ingeniería y tecnología, Pearson Educación, México, 2002
Kevin Chou, Y., Lui, J., CVD diamond tool performance in metal matrix composite machining, Surf. Coat. Technol. 200 (2005) 18721878CrossRefGoogle Scholar
Köpf, A., Feistritzer, S., Udier, K., Diamond coated cutting tools for machining of non-ferrous metals and fibre reinforced polymers, Int. J. Ref. Met. Hard Mater. 24 (2006) 354359CrossRefGoogle Scholar
Davim, J.P., Diamond tool performance in machining metal-matrix composites, J. Mat. Proc. Technol. 128 (2002) 100105CrossRefGoogle Scholar
Turchetta, S., Carrino, L., Polini, W., CVD diamond insert in stone cutting, Diam. Rel. Mat. 14 (2005) 641645CrossRefGoogle Scholar
Arumugam, P.U., Malshe, A.P., Batzer, S.A., Dry machining of aluminium silicon alloy using polished CVD diamond-coated cutting tools inserts, Surf. Coat. Technol. 200 (2006) 33993403CrossRefGoogle Scholar
Fukui, H., Okida, J., Omori, N., Moriguchi, H., Tsuda, K., Cutting performance of DLC coated tools in dry machining aluminium alloys, Surf. Coat. Technol. 187 (2004) 7076CrossRefGoogle Scholar
Cabral, G., Reis, P., Polini, R., Titus, E., Ali, N., Davim, J.P., Grácio, J., Cutting performance of time-modulated chemical vapour deposited diamond coated tool inserts during machining graphite, Diam. Rel. Mat. (2006) 17531758 CrossRefGoogle Scholar
Sreejith, P.S., Krishnamurthy, R., Malhotra, S.K., Effect of specific cutting pressure and temperature during machining of carbon/phenolic ablative composite using PCBN, J. Mat. Proc. Technol. 183 (2007) 8895CrossRefGoogle Scholar
Ravindra, H.V., Srinivasa, Y.G., Krishnamurthy, R., Tool wear monitoring in turning using a pattern-recognition technique, J. Mat. Proc. Technol. 37 (1993-a) 731740 CrossRefGoogle Scholar
Ravindra, H.V., Srinivasa, Y.G., Krishnamurthy, R., Modeling of tool wear based on cutting forces in turning, Wear 169 (1993-b) 2532 CrossRefGoogle Scholar
Bonifacio, M.E.R., Diniz, A.E., Correlating tool wear tool life, surface roughness and tool vibration in finish turning with coated carbide tools, Wear 173 (1994) 137144CrossRefGoogle Scholar
Dolinsek, S., Kopac, J., Acoustic emission signals for tool wear identification, Wear 225 (1999) 295303CrossRefGoogle Scholar
Spur, G., Wunsch, U.E., Turning of Fiber-Reinforced Plastics, Manuf. Rev. 1 (1988) 124129Google Scholar
Palanikumar, K., Karunamoorthy, L., Karthikeyan, R., Optimizing the machining parameters for minimum surface roughness in turning of GFRP composites using design of experiments, J. Mat. Sci. Technol. 20 (2004) 373378Google Scholar
Palanikumar, K., Cutting parameters optimization for surface roughness in machining of GFRP composites using Taguchi’s method, J. Reinf. Plast. Compos. 25 (2006) 17391751CrossRefGoogle Scholar
Abouelatta, O.B., Mádl, J., Surface roughness prediction based on cutting parameters and tool vibrations in turning operations, J. Mat. Proc. Technol. 118 (2001) 269-277CrossRefGoogle Scholar
Petropoulos, G., Davim, J.P., Mata, F., Pandazaras, C., New considerations of evaluating the anisotropy of machined surfaces, J. Balkan Tribological Association 12 (2006-a) 16 Google Scholar
Ramulu, M., Wern, C.W., Garbini, J.L., Effect of the direction on surface roughness measurements of machined graphite/epoxy composite, Compos. Manuf. 4 (1993) 3951CrossRefGoogle Scholar
Cenna, A.A., Mathew, P., Evaluation of cut quality of fibre-reinforced plastics, Int. J. Mach. Tool. Manuf. (1997) 723736 CrossRefGoogle Scholar
Santhanakrishman, G., Krishnamurthy, R., Malhota, S.K., Machinability Characteristics of Fiber Reinforced Plastics Composites, J. Mech. Work. Technol. (1988) 195204 CrossRefGoogle Scholar
Ramulu, M., Arola, D., Colligan, K., Preliminary Investigation of Effects on the Surface Integrity of Fiber Reinforced Plastics, PD-VOL-64-2, Engineering Systems Design and Analysis 2 ASME (1994) 93101 Google Scholar
Kopac, J., Bahor, M., Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product, J. Mat. Proc. Technol. 92–93 (1999) 381387CrossRefGoogle Scholar
Wang, X.M., Zhang, L.C., An experimental investigation into the orthogonal cutting of unidirectional fiber reinforced plastics, Int. J. Mach. Tool. Manuf. 43 (2003) 10151022CrossRefGoogle Scholar
Davim, J.P., Reis, P., Dimensional precision and surface roughness on turning tubes in fibre reinforced plastics based on the design experiments, Int. J. Mat. Prod. Technol. 20 (2004-a) 268279 CrossRefGoogle Scholar
Petropoulos, G.P., Pandazaras, C.N., Vaxevanidis, N.M., Antoniadis, A., Multi-parameter identification and control of turned surface textures, Int. J. Adv. Manuf. Technol. 29 (2006-b) 118128 CrossRefGoogle Scholar
Risbood, K.A., Dixit, U.S., Sahasrabudhe, A.D., Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process, J. Mat. Proc. Technol. 132 (2003) 203214CrossRefGoogle Scholar
Brezocnik, M., Kovacic, M., Ficko, M., Prediction of surface roughness with genetic programming, J. Mat. Proc. Technol. 157 (2004) 2834CrossRefGoogle Scholar
Núñez, P.J., Simao, J., Arenas, J.M., De la Cruz, C. Surface roughness characterization using cutting force analysis, regression and neural network prediction models, Mat. Sci. Forum 526 (2006) 211216CrossRefGoogle Scholar
Palanikumar, K., Karunamoorthy, L., Karthikeyan, R., Parametric optimization to minimise the surface roughness on the machining of GFRP composites, J. Mat. Sci. Techn. 22 (2006-a) 6672 Google Scholar
Palanikumar, K., Karunamoorthy, L., Karthikeyan, R., Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the Taguchi method with fuzzy logics, Met. Mater. Int. 12 (2006-d) 483491 CrossRefGoogle Scholar