Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-17T03:38:04.490Z Has data issue: false hasContentIssue false

Performance prediction of a mixed flow turbine

Published online by Cambridge University Press:  17 May 2008

Miloud Abidat
Affiliation:
Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran, BP 1505, Oran El M'Naouer, 31000 Oran, Algeria
Mohammed Kamel Hamidou
Affiliation:
Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran, BP 1505, Oran El M'Naouer, 31000 Oran, Algeria
Madjid Hachemi
Affiliation:
Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran, BP 1505, Oran El M'Naouer, 31000 Oran, Algeria
Mohammed Hamel
Affiliation:
Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran, BP 1505, Oran El M'Naouer, 31000 Oran, Algeria
Sid Ali Litim
Affiliation:
Laboratoire de Mécanique Appliquée, Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran, BP 1505, Oran El M'Naouer, 31000 Oran, Algeria
Get access

Abstract

Turbochargers are widely used in Diesel engines as a means of increasing the output power. Most of them are fitted with radial or mixed flow turbines. In applications where high boost pressure is required, radial turbines are replaced with mixed flow turbines with positive rotor inlet blade angle so that they can achieve a maximum efficiency at a lower value of blade speed to isentropic expansion velocity ratio than the usual 0.7 (for radial turbines). This study, performed with the ICEM and CFX softwares of ANSYS, presents a numerical performance prediction of a mixed flow turbine for a wide range of rotational speeds and pressure ratios. The influence of the clearance between the rotor tip blades and the casing on the turbine performances is also investigated. A simulation of the turbine under pulsed inlet flow conditions is also presented.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Abidat, Design and testing of a highly loaded mixed flow turbine, Ph.D. Thesis, Imperial College, London, 1991
Abidat, M., Chen, H., Baines, N.C., Firth, M.R., Design of a Highly loaded mixed flow turbine, Proc., IMechE, J. Power Energy 206 (1992) 95107 CrossRef
Abidat, M., Hachemi, M., Hamidou, M. K., Baines, N.C., Prediction of the steady and non-steady flow performance of a highly loaded mixed flow turbine, Proc., IMechE, J. Power Energy 212 (1998) 173184 CrossRef
C. Arcoumanis, I. Hakeem, R.F. Martinez-Botas, L. Khezzar, N.C. Baines, Performance of a Mixed Flow Turbocharger Turbine under Pulsating Flow Conditions, ASME, Paper 95-GT-210
Chen, H., Hakeem, I., Martinez-Botas, R.F., Modelling of a turbocharger turbine under pulsating inlet conditions, Proc., IMechE, J. Power Energy 210 (1996) 397408 CrossRef
Karamanis, N., Martinez-Botas, R.F., Mixed, C.C. Su flow turbines: Inlet and exit flow under steady and pulsating conditions, ASME, J. Turbomachinery 123 (2001) 359371 CrossRef
F.S. Bhinder, P.S. Gulati, A method for predicting the performance of centripetal turbines in non-steady flow, IMechE (1978)
V. Gabette, Ph. San Emeterio, Ph. Arques, Influence d'un écoulement pulsé sur les caractéristiques de fonctionnement d'une turbine de suralimentation de moteur thermique, Mécanique Materiaux Electricité n° 394-395 octobre/novembre 1982
A. Dale, N. Watson, Vaneless Radial Turbocharger Turbine Performance, IMechE 1986, C110/86
H. Chen, D.E. Winterbone, A method to predict performance of vaneless radial turbines under steady and unsteady flow conditions, IMechE (1990)
A. Hammoud, Q.C. Duan, J. Julien, Étude de la validité de l'hypothèse de quasi-stationnarité appliquée au fonctionnement d'une turbine de suralimentation en régime pulsé, Entropie 174/175 (1993)
P. Bradshaw, T. Cebeci, J.H. Whitelaw, Engineering calculation methods for turbulent flow, Academic Press, London, 1981
Patankar, S.V., Spalding, D.B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf. 15 (1972) 17781806
F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA-J. 32 (1994)
C.M. Rhie, W.L.A. Chow, Numerical Study of the Turbulent Flow Past an Isolated Airfoil with Trailing Edge Separation, AIAA J. 21 (1982)
CFX5 Solver Theory, 2004
C.A. Rodgers, Cycle analysis technique for small gas turbines, Technical advances in gas turbine design, Proc. IMechE 183 (1969)
H.E. Rohlik, Analytical determination of radial-inflow turbine design geometry for maximum efficiency, NASA TN D-4384 (1968)
Chen, H., Baines, N.C., Abidat, M., Exit traverse study of mixed-flow turbines with inlet incidence variation, Proc. Inst. Mech. Engrs. 211 (1997) 461475 CrossRef
Palfreyman, D., Martinez-Botas, R.F., The pulsating flow field in a mixed flow turbocharger turbine: an experimental and computational study, Trans. ASME J. Turbomachinary 127 (2005) 144155 CrossRef