Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:15:27.521Z Has data issue: false hasContentIssue false

Micromechanical modeling and experimental characterization of the non linear behavior of platelet-reinforced nanocomposites

Published online by Cambridge University Press:  05 August 2009

Ludovic Cauvin
Affiliation:
Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France
Djimedo Kondo
Affiliation:
Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France
Mathias Brieu
Affiliation:
Laboratoire de Mécanique de Lille, Boulevard Paul Langevin, 59655 Villeneuve d'Ascq, France
Naresh Bhatnagar
Affiliation:
Mech. Eng. Dpt., Indian Institute of Technology, HausKhaz, New Delhi, India
Get access

Abstract

Nanocomposites with platelet reinforcements are emergent materials whose deformation mechanisms still need to be carefully investigated. In this study, we first present the studied class of nanocomposites (Polypropylene reinforced by Montmorillonite clay nanoplatelets). From uniaxial tensile tests, it is shown that some mechanical characteristics of the nanocomposite (Young's modulus, yield stress) significantly increase compared to the matrix even for very low volume fraction of reinforcements (maximum of 7% mass fraction for our tested specimen). The Ponte Castañeda and Willis [6] bound is adopted to account for the evolution of the elastic behavior of the material [7]. Adapting the Hill-type incremental method [13] allows the simulation of the non linear behaviour of the material. However, it is shown that this scheme requires careful choice of the aspect ratio, in the plastic domain, to provide good predictions of plasticity.

Type
Research Article
Copyright
© AFM, EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. Chabert, Propriétés mécaniques de nanocomposites à matrice polymère : approche expérimentale et modélisation, Département Génie des Matériaux de l'INSA, Lyon, France, 2002
Fornes, T.D., Paul, D.R., Modelling properties of nylon6/clay nanocomposites using composite theories, Polymer 44 (2003) 49935013 CrossRef
Gloaguen, J.M., Lefebvre, J.M., Plastic deformation behaviour of thermoplastic/clay nanocomposites, Polymer 42 (2001) 58415847 CrossRef
V. Marcadon, Effets de taille et d'interphase sur le comportement mécanique de nanocomposites particulaires Département Mécanique et Matériaux de l'École Polytechnique, Paris, France, 2005
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21 (1973) 571574 CrossRef
Ponte Castañeda, P., Willis, J.R., The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids 43 (1995) 19191951 CrossRef
Cauvin, L., Bhatnagar, N., Brieu, M., Kondo, D., Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites, C. R. Mecanique 335 (2007) 702707 CrossRef
M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en mécanique des matériaux 1. Matériaux aléatoires élastiques et milieux périodiques, Hermes Sciences Europe Ltd, 2001
Doghri, I., Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures study of tangent operators, cyclic plasticity and numerical algorithms, Int. J. Solids Struct. 40 (2003) 16811712 CrossRef
Bafna, A., Beaucage, G., Mirabella, F., Mehtab, S., 3D Hierarchical orientation in polymer-clay nanocomposite films, Polymer 44 (2003) 11031115 CrossRef
Chaboche, J.L., Kanouté, P., On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites, Int. J. Plasticity 21 (2005) 14091434 CrossRef
Abou-Chakra Guery, A., Cormery, F., Shao, J.F., Kondo, D., A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial, Int. J. Solids Struct. 45 (2008) 14061429 CrossRef
Hill, R., Continuum Micro-mechanics of elastoplastic polycristals, J. Mech. Phys. Solids 13 (1965) 89101 CrossRef
Sharma, P., Ganti, S., Size-dependent Eshelby's Tensor for embedded Nano-inclusions Incorporating Surface/Interface Energies, J. Appl. Mech. 71 (2004) 663671 CrossRef
Weon, J.-I., Sue, H.-J., Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite, Polymer 46 (2005) 63256334 CrossRef