Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T21:23:58.611Z Has data issue: false hasContentIssue false

Identification of constitutive properties of a laminated rotorat rest through a condensed modal functional

Published online by Cambridge University Press:  24 December 2010

Guillaume Mogenier*
Affiliation:
Universitéde Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 18–20 rue des sciences, 69621 Villeurbanne, France
Nouri-Baranger Thouraya
Affiliation:
Universitéde Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 18–20 rue des sciences, 69621 Villeurbanne, France
Regis Dufour
Affiliation:
Universitéde Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 18–20 rue des sciences, 69621 Villeurbanne, France
Lionel Durantay
Affiliation:
Converteam SAS, Rotating Machines Division, 442 rue de la rompure, 54250 Champigneulles, France
Nicolas Barras
Affiliation:
Converteam SAS, Rotating Machines Division, 442 rue de la rompure, 54250 Champigneulles, France
*
a Corresponding author:[email protected]
Get access

Abstract

Predicting the dynamic behavior of laminated rotors in bending requires theidentification of the bending rigidity of the laminated core. An identification ofconstitutive properties is proposed on the rotor at rest, which is a first step forrotordynamics prediction. Modal parameters predicted and measured are included in afunctional based on a hybrid Rayleigh quotient and combined with the Guyan method, themaster degrees of freedom corresponding to the measurement points. The laminated corerigidity is extracted through a Levenberg-Marquardt minimization.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Mogenier, G., Dufour, R., Ferraris-Besso, G., Durantay, L., Barras, N., Identification of lamination stack properties. application to high speed induction motors, IEEE Trans. Ind. Electron. 57 (2010) 281287 CrossRefGoogle Scholar
R. Belmans, W. Heylen, A. Vandenput, W. Geysen, Influence of rotor-bar stiffness on the critical speed of an induction motor with an aluminium squirrel cage, in: IEEE Proc. B: Electric power Applications, Vol. 131, 1984, pp. 203–208
J. McClurg, Advantages of stiff shaft design on high speed, high horsepower squirrel cage induction motors and generators, in: 34th record of Conference Papers, Annual Petroleum and Chemical Industry Conference, 1987, pp. 259–263
Chang, S., Lee, D., Robust design of a composite air spindle, Polym. Compos. 23 (2002) 361371 CrossRefGoogle Scholar
Ede, J., Howe, D., Zhu, Z., Rotor resonances of high-speed permanent-magnet brushless machines, IEEE Trans. Ind. Appl. 38 (2002) 15421548 CrossRefGoogle Scholar
Garvey, S., Penny, J., Friswell, M., Lees, A., The stiffening effect of laminated rotor cores on flexible-rotor electrical machines, IMechE Event Publications 2004 (2004) 193202 Google Scholar
Chen, Y.S., Cheng, Y.D., Liao, J.J., Chiou, C.C., Development of a finite element solution module for the analysis of the dynamic behavior and balancing effects of an induction motor system, Finite Elem. Anal. Des. 44 (2008) 483492 CrossRefGoogle Scholar
S. Garvey, The vibrational behaviour of laminated components in electrical machines, in: The 4th International Conference on Electrical Machines and Drives, 1989, pp. 226–231
Long, S., Zhu, Z., Howe, D., Vibration behaviour of stators of switched reluctance motors, IEEE Proc.: Electric Power Applications, 148 (2001) 257264 Google Scholar
Z. Tang, P. Pillay, A.M. Omekanda, C. Li, C. Cetinkaya, Effects of material properties on switched reluctance motor vibration determination, in: Conference Record – IAS Annual Meeting (IEEE Industry Applications Society), Vol. 1, 2003 IEEE Industry Applications Conference, 38th IAS Annual Meeting – Crossroads To Innovation, Institute of Electrical and Electronics Engineers Inc., 2003, pp. 235–241
Kim, Y.-C., K. K-W, Influence of lamination pressure upon the stiffness of laminated rotor, JSME Int. J. Ser. C Mech. Syst., Machine Elements and Manufacturing 49 (2006) 426431 Google Scholar
Lee, C., Kam, T., Identification of mechanical properties of elastically restrained laminated composite plates using vibration data, J. Sound Vib. 295 (2006) 9991016 CrossRefGoogle Scholar
Feng, X., Zhou, J., Fan, Y., Method for identifying sub-regional material parameters of concrete dams using modal data, Acta Mech. Sol. Sin. 16 (2003) 8894 Google Scholar
Cugnoni, J., Gmür, T., Schorderet, A., Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates, Comput. Struct. 85 (2007) 13101320 CrossRefGoogle Scholar
Lauwagie, T., Lambrinou, K., Patsias, S., Heylen, W., Vleugels, J., Resonant-based identification of the elastic properties of layered materials: application to air-plasma sprayed thermal barrier coatings, NDT and E Int. 41 (2008) 8897 CrossRefGoogle Scholar
Ojalvo, I., Efficient computation of mode-shape derivatives for large dynamic systems, AIAA J. 25 (1987) 13861390 CrossRefGoogle Scholar
Min, Y., Zhong-Sheng, L., Da-Jun, W., Comparison of several approximate modal methods for computing mode shape derivatives, Comput. Struct. 62 (1997) 381393 Google Scholar
Nelson, R., Simplified calculation of eigenvector derivatives, AIAA J. 14 (1976) 12011205 Google Scholar
Andrieux, S., Baranger, T., Energy methods for Cauchy problems of evolutions equations, J. Phys.: Conf. S. 135 (2008) Google Scholar
Guyan, R.J., Reduction of stiffness and mass matrices, AIAA J. 3 (1965) 380380 CrossRefGoogle Scholar
Miguel, L.F.F., de Menezes, R.C.R., Miguel, L.F.F., Mode shape expansion from data-based system identification procedures, Mec. Compu., Dynam. Vibr. (A) 25 (2006) 15931602 Google Scholar
Kuratani, F., Shimada, T., Yamano, T., Ogawa, T., Structural modification with mode shape expansion for rib stiffeners, JSME Int. J. S. C Mech. Syst., Machine Elements and Manufacturing 49 (2006) 771778 Google Scholar
J.-S. Przemieniecki, Theory of Matrix Structural Analysis, 46th edition, Dover Publications, INC., New York, 1985
M. Lalanne, G. Ferraris, Rotordynamics Prediction in Engineering, 2nd edition,John Wiley and Sons Ltd, New York, 1998
G. Genta, Dynamics of Rotating Systems, Springer Verlag, 2005
Cowper, G., The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech. 33 (1966) 335340 CrossRefGoogle Scholar
T. Gmür, Dynamique des structures: Analyse modale numérique, Presses Polytechniques et Universitaires Romandes, 1997
H. Nielsen, Damping parameter in Marquardt’s method, Technical report, Technical Univ. of Denmark, 1999
Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math. 11 (1963) 431441 CrossRefGoogle Scholar
G. Mogenier, R. Dufour, G. Ferraris-Besso, L. Durantay, N. Barras, Optimization procedure for identifying constitutive properties of high speed induction motor, Proc. 2008 Int. Conf. Electrical Machines, ICEM’08, 2008
Morales, C., Comments on the MAC and the NCO, and a linear modal correlation coefficient, J. Sound Vib. 282 (2005) 529537 CrossRefGoogle Scholar