Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T11:41:22.485Z Has data issue: false hasContentIssue false

Experimental validation of a tube based constitutive equationfor linear polymer melts with inter-chain tube pressure effect

Published online by Cambridge University Press:  02 April 2013

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A polydisperse case of an entangled linear polymer melts constitutive equation wasstudied. This constitutive equation, proposed by S. Dhole et al. [J. Non-Newtonian FluidMech. 161 (2009) 10–18], based on the reptation theory and the tube model, was tested on apolystyrene in shear (capillary rheometry) and planar extension in a complex flow(fieldwise measurements in a contraction flow) for different level of strain rates. A goodquantitative prediction of all the set of experiments was obtained, using no adjustablenonlinear parameters.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

References

Dhole, S., Leygue, A., Bailly, C., Keunings, R., A single segment differential tube model with interchain tube pressure effect, J. Non-Newtonian Fluid Mech. 161 (2009) 1018 CrossRefGoogle Scholar
M. Doi, S.F. Edwards, The theory of polymer dynamics, Oxford sciences publications, 1986
Ianniruberto, G., Marrucci, G., A simple constitutive equation for entangled polymers with chain stretch, J. Rheology 45 (2001) 13051318 CrossRefGoogle Scholar
Likhtman, A.E., Graham, R.S., Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation, J. Non-Newtonian Fluid Mech. 114 (2003) 112 CrossRefGoogle Scholar
Marrucci, G., Ianniruberto, G., Flow-induced orientation and stretching of entangled polymers, Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 361 (2003) 677687 CrossRefGoogle ScholarPubMed
Ianniruberto, G., Marrucci, G., On compatibility of the Cox-Merz rule with the model of Doi and Edwards, J. Non-Newtonian Fluid Mech. 65 (1996) 241246 CrossRefGoogle Scholar
Lee, K., Mackley, M.R., McLeish, T.C.B., Nicholson, T.M., Harlen, O.G., Experimental observation and numerical simulation of transient “stress fangs” within flowing molten polyethylene, J. Rheology 45 (2001) 12611277 CrossRefGoogle Scholar
Collis, M.W., Lele, A.K., Mackley, M.R., Graham, R.S., Groves, D.J., Likhtman, A.E., Nicholson, T.M., Harlen, O.G., McLeish, T.C.B., Hutchings, L.R., Fernyhough, C.M., Young, R.N., Constriction flows of monodisperse linear entangled polymers: Multiscale modeling and flow visualization, J. Rheology 49 (2005) 501522 CrossRefGoogle Scholar
Valette, R., Mackley, M.R., del Castillo, G.H.F., Matching time dependent pressure driven flows with a Rolie Poly numerical simulation, J. Non-Newtonian Fluid Mech. 136 (2006) 18125 CrossRefGoogle Scholar
Gough, T., Spares, R., Kelly, A.L., Brook, S.M., Coates, P.D., Three-dimensional characterisation of full field stress and velocity fields for polyethylene melt through abrupt contraction, Plastics Rubber and Composites 37 (2008) 158165 CrossRefGoogle Scholar
Hassell, D.G., Auhl, D., McLeish, T.C.B., Mackley, M.R., The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction-expansion slit geometry, Rheologica Acta 47 (2008) 821834 CrossRefGoogle Scholar
Hassell, D.G., Hoyle, D., Auhl, D., Harlen, O., Mackley, M.R., McLeish, T.C.B., Effect of branching in cross-slot flow: the formation of “W cusps”, Rheologica Acta 48 (2009) 551561 CrossRefGoogle Scholar
Scelsi, L., Mackley, M.R., Klein, H., Olmsted, P.D., Graham, R.S., Harlen, O.G., McLeish, T.C.B., Experimental observations and matching viscoelastic specific work predictions of flow-induced crystallization for molten polyethylene within two flow geometries, J. Rheology 53 (2009) 859876 CrossRefGoogle Scholar
Auhl, D., Hoyle, D.M., Hassell, D., Lord, T.D., Mackley, M.R., Harlen, O.G., McLeish, T.C.B., Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts, J. Rheology 55 (2011) 875900 CrossRefGoogle Scholar
Boukellal, G., Durin, A., Valette, R., Agassant, J.F., Evaluation of a tube-based constitutive equation using conventional and planar elongation flow optical rheometers, Rheologica Acta 50 (2011) 547557 CrossRefGoogle Scholar
Bach, A., Almdal, K., Rasmussen, H.K., Hassager, O., Elongational viscosity of narrow molar mass distribution polystyrene, Macromolecules 36 (2003) 51745179 CrossRefGoogle Scholar
Marrucci, G., Ianniruberto, G., Interchain pressure effect in extensional flows of entangled polymer melts, Macromolecules 37 (2004) 39343942 CrossRefGoogle Scholar
Wagner, M.H., Kheirandish, S., Hassager, O., Quantitative prediction of transient and steady-state elongational viscosity of nearlymonodisperse polystyrene melts, J. Rheology 49 (2005) 13171327 CrossRefGoogle Scholar
C.W. Macosko, Rheology Principles, Measurements and Applications, VCH Publishers, New York, 1994
Han, C.D., Drexler, L.H., Studies of converging flows of viscoelastic polymeric melts. I. Stress-birefringent measurements in the entrance region of a sharp-edged slit die, J. Appl. Polym. Sci. 17 (1973) 23292354 CrossRefGoogle Scholar
Clemeur, N., Rutgers, R.P.G., Debbaut, B., Numerical evaluation of three dimensional effects in planar flow birefringence, J. Non-Newtonian Fluid Mech. 123 (2004) 105120 CrossRefGoogle Scholar
Sirakov, I., Ainser, A., Haouche, M., Guillet, J., Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom differential constitutive model, J. Non-Newtonian Fluid Mech. 126 (2005) 163173 CrossRefGoogle Scholar
Ianniruberto, G., Marrucci, G., A multi-mode CCR model for entangled polymers with chain stretch, J. Non-Newtonian Fluid Mech. 102 (2002) 383395 CrossRefGoogle Scholar