Article contents
Experimental and finite element analysis of superelasticbehaviour of shape memory alloy for damping applications
Published online by Cambridge University Press: 05 September 2014
Abstract
Shape memory alloys (SMA) are good candidates especially for being used as passivedampers. In order to develop the use of these alloys in structural vibrations control, thedynamical behavior of a NiTi helical spring is led, and the damping effect investigated.First, compression tests on the spring are carried out. These tests allow us to notice theeffect of the maximal compression displacement, the cyclic behavior and the compressionrate on its mechanical behavior. A finite element model analysis of the compression testsis then proposed. In consequence, the materials parameters have been identified after anumerical convergence test. In order to characterize the dynamical behavior of the spring,the innovative tool called equivalent complex stiffness is developed and used. Finally,the one degree of freedom vibration equation is solved with this equivalent complexstiffness. The solution of this equation clearly shows the non linear dynamical behaviorof the SMA spring and its damping potential.
Keywords
- Type
- Research Article
- Information
- Copyright
- © AFM, EDP Sciences 2014
References
- 9
- Cited by