Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T19:08:15.515Z Has data issue: false hasContentIssue false

Resonance phenomenon of strain waves in helical compression springs

Published online by Cambridge University Press:  30 September 2013

Get access

Abstract

In this study, vibration of helical compression springs, excited axially, is discussed. The mathematical formulation of the dynamic behavior of the springs is composed of a system of four partial differential equations of first order hyperbolic type, which are the equations of momentum and the laws of constitution. The principle unknown variables are angular and axial deformations and velocities. In small deformations, the coefficients of the equation system are constant and the model describes the linear dynamic behavior of coil springs. The impedance method is applied to calculate the frequency spectrum and to study the natural frequency response. The study takes into account the dynamic coupling between the axial and angular waves due to the effects of Poisson’s ratio. The results show two fundamental frequencies corresponding to the two wave speeds: fast angular waves and slow axial waves. The numerical resolution is performed by the conservative finite difference scheme of Lax-Wendroff and the finite element method. The results were used to analyze the evolution in time of deformations and velocities in different sections of the spring due to a sinusoidal excitation of the axial velocity applied at the end of the spring and to show the effect of the interaction between the axial and angular waves. These results clearly show the resonance and other phenomena related to wave propagations such as wave reflections and beat.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.M. Wahl, Mechanical springs, Cleveland, Ohio, Penton Publishing Co., 1963
Wittrick, W.H., On elastic wave propagation in helical springs, Int. J. Mech. Sci. 8 (1966) 2547 CrossRefGoogle Scholar
A.E.H. Love, A treatise on the mathematical theory of elasticity, 4th Editions, Dover Publications, New York, 1927
Stokes, V.K., On the dynamic radial expansion of helical springs due to longitudinal impact, J. Sound Vib. 35 (1974) 77 CrossRefGoogle Scholar
Gironnet, B., Louradour, G., Comportement dynamique des ressorts, Techniques de l’Ingénieur BD2 (1983) B610-1-B610-11 Google Scholar
Yildirim, V., An efficient numerical method for predicting the natural frequencies of cylindrical helical springs, Int. J. Mech. Sci. 41 (1999) 919939 CrossRefGoogle Scholar
Lee, J., Thompson, D.J., Dynamic stiffness formulation, free vibration and wave motion of helical springs, J. Sound Vib. 239 (2001) 279320 CrossRefGoogle Scholar
Lee, L., Free vibration analysis of cylindrical helical springs by the pseudo spectral method, J. Sound Vib. 302 (2007) 185196 CrossRefGoogle Scholar
Becker, L.E., Chassie, G.G., Cleghorn, W.L., On the natural frequencies of helical compression springs, Int. J. Mech. Sci. 44 (2002) 825841 CrossRefGoogle Scholar
Jiang, W., Wang, T.L., Jones, W.K., The forced vibration of helical spring, Int. J. Mech. Sci. 34 (1992) 549563 CrossRefGoogle Scholar
Sinha, S.K., Costello, G.A., The numerical solution of the dynamic response of helical springs, Int. J. Numeri. Methods Eng. 12 (1978) 949961 CrossRefGoogle Scholar
Phillips, J.W., Costello, G.A., Large deflections of impacted helical springs,J. Acoust. Soc. America 51 (1971) 967972 CrossRefGoogle Scholar
S. Ayadi, E. Hadj-Taieb, G. Pluvinage, The numerical solution of strain waves propagation in elastic helical springs, Mater. Technol. (2007) 47–52
Ayadi, S., Hadj-Taïeb, E., Influence des caractéristiques mécaniques sur la propagation des ondes de déformations linéaires dans les ressorts hélicoïdaux, Mécaniques et Industries 7 (2006) 551563 CrossRefGoogle Scholar
Ayadi, S., Hadj-Taïeb, E., Simulation numérique du comportement dynamique linéaire des ressorts hélicoïdaux, Trans. Can. Soc. Mech. Eng. 30 (2006) 191208 Google Scholar
Lerat, A., Peyret, R., Sur le choix des schémas aux differences du second ordre fournissant des profils de choc sans oscillations, C.R. Acad. Sci. Paris 277 (1966) 363366 Google Scholar
Lax, P.D., Wendroff, B., Difference schemes for hyperbolic equations with high order of accuracy, Communi. Pure Appl. Math. 17 (1966) 381398 CrossRefGoogle Scholar
G.R. Buchanan, Finite Element Analysis, Tata McGraw-Hill Edition, New Delhi, 2004
D.H. Norrie, G. Vries, The Finite Element Method, Acadamie Press Inc., New York, 1973
C. Zienkiewicz, R.L. Taylor, The Finite Element Method, The fourth edition, McGraw-Hill Book Company, U.K., 1988
G. Dhatt, G. Touzot, Une présentation de la méthode des éléments finis, Ed. Maloine SA, Paris, 1984
F. Scheid, Numerical Analysis, Second Edition, Tata McGraw-Hill Edition, New Delhi, 2004
R. Courant Freidrichs, Lewy, K.H., Uber die Partiellen Differenzengleichungen der Mathematischen Physick, Math. Annaen 100 (1928) 3274 Google Scholar
R.D. Richtmeyer, K.W. Morton, Difference methods for initial value problems, Intersciences Publishers, A Division of Jhon Wylie and Sons, New York, 1967
Yildirim, V., Expressions for predicting fundamental natural frequencies of non-cylindrical helical springs, J. Sound Vib. 252 (2002) 479-491 CrossRefGoogle Scholar
C.E. Fröberg, Introduction to numerical analysis, Adison-Wesley Publishing Company, USA, 1979
Ayadi, S., Hadj-Taieb, E., Finite element solution of dynamic response of helical springs, Int. J. Simul. Modell. 7 (2008) 1728 CrossRefGoogle Scholar