Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T20:58:12.408Z Has data issue: false hasContentIssue false

Nonlinear phenomena in nanomechanical resonators: mechanicalbehaviors and physical limitations

Published online by Cambridge University Press:  03 February 2011

Najib Kacem*
Affiliation:
CEA/LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble, France Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 69621 Villeurbanne, France
Sébastien Baguet
Affiliation:
Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 69621 Villeurbanne, France
Sébastien Hentz
Affiliation:
CEA/LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble, France
Régis Dufour
Affiliation:
Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR 5259, 69621 Villeurbanne, France
*
a Corresponding author:[email protected]
Get access

Abstract

In order to overcome the loss of performances issue when scaling resonant sensors down toNEMS, it proves extremely useful to study the behavior of resonators up to largedisplacements and hence high nonlinearities. A comprehensive nonlinear multiphysics modelbased on the Euler-Bernoulli equation which includes both mechanical and electrostaticnonlinearities in the case of a capacitive doubly clamped beam is presented. This purelyanalytical model captures all the nonlinear phenomena present in NEMS resonatorselectrostatically actuated including bistability, multistability which can lead to severalphysical limitations such as noise mixing, frequency stability deterioration as well asdynamic pull-in. Moreover, close-form expressions of the critical amplitudes and pull-indomain initiation amplitude are provided which can potentially serve for NEMS designers asquick design rules.

Type
Research Article
Copyright
© AFM, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Ekinci, K.L., Roukes, M.L., Nanoelectromechanical systems, Rev. Sci. Instrum. 76 (2005) 061101 CrossRefGoogle Scholar
Huang, X.M.H., Ekinci, K.L., Roukes, M.L., Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett. 84 (2004) 44694471 Google Scholar
Jensen, K., Kim, K., Zettl, A., An atomic-resolution nanomechanical mass sensor, Nature Nanotechnol. 3 (2008) 533537 CrossRefGoogle ScholarPubMed
C.T. Nguyen, Micromechanical components for miniaturized low-power communications, in 1999 IEEE MTT-S international Microwave Symposium FR MEMS Workshop, 1999, pp. 48–77
A.C.W. Nguyen, C.T.D. Hao, Tunable, switchable, high-q vhf microelectromechanical bandpass filters, in IEEE International Solid-State Circuits Conf., 1999, Vol. 448, p. 78
Cho, A., Physics-researchers race to put the quantum into mechanics, Science 299 (2003) 3637 CrossRefGoogle ScholarPubMed
LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C., Approaching the quantum limit of a nanomechanical resonator, Science 304 (2004) 7477 CrossRefGoogle ScholarPubMed
Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V., Nonlinear dynamics of nanomechanical beam resonators: improving the performance of nems-based sensors, Nanotechnology 20 (2009) 275501 CrossRefGoogle ScholarPubMed
Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S., Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for high sensitive NEMS gas/mass sensors applications, J. Micromech. Microeng. 20 (2010) 04502 CrossRefGoogle Scholar
Sumpter, B.G., Noid, D.W., The onset of instability in nanostructures: the role of nonlinear resonance, J. Chem. Phys. 102 (1995) 66196622 CrossRefGoogle Scholar
X.L. Feng, Phase noise and frequency stability of very-high frequency silicon nanowire nanomechanical resonators, in 14th International Conference on Solid-State Sensors, Actuators and Microsystems, 2007, pp. 327–30
R.T. Howe, T.A. Roessig, A.P. Pisano, Nonlinear mixing in surface-micromachined tuning fork oscillators, in Frequency Control Symposium, 1997, Proc. IEEE Int., 1997, pp. 778–782
Kaajakari, V., Koskinen, J.K., Mattila, T., Phase noise in capacitively coupled micromechanical oscillators, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 52 (2005) 23222331 CrossRefGoogle ScholarPubMed
Seoánez, C., Guinea, F., Castro Neto, A.H., Dissipation in graphene and nanotube resonators, Phys. Rev. B 76 (2007) 125427 CrossRefGoogle Scholar
V. Sazonova, A tunable carbon nanotube resonator, Ph.D. Dissertation, Cornell University, Ithaca, New York, 2006
L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Butterworth-Heinemann, Oxford, 3rd edition, 1986
Nishiyama, H., Nakamura, M., Capacitance of a strip capacitor, IEEE Trans. Compon. Hybrids Manuf. Technol. 13 (1990) 417423 CrossRefGoogle Scholar
Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M., Dynamic pull-in phenomenon in mems resonators, Nonlinear Dyn. 48 (2007) 153163 CrossRefGoogle Scholar
Thouzé, C., Thomas, O., Non-linear behaviour of free-edge shallow spherical shells: Effect of the geometry, Int. J. Non-Linear Mech. 41 (2006) 678692 CrossRefGoogle Scholar
N. Kacem, Nonlinear dynamics of M&NEMS resonant sensors: design strategies for performance enhancement, Ph.D. Dissertation, Insa-Lyon, CEA-LETI, Grenoble, 2010
Husain, A., Hone, J., Postma, H.W. Ch., Huang, X.M.H., Drake, T., Barbic, M., Scherer, A., Roukes, M.L., Nanowire-based very-high-frequency electromechanical resonator, Appl. Phys. Lett. 83 (2003) 12401242 CrossRefGoogle Scholar
A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley, 1979
C. Gui, R. Legtenberg, H.A.C. Tilmans, J.H.J. Fluitman, M. Elwenspoek, Nonlinearity and hysteresis of resonant strain gauges, in Micro Electro Mechanical Systems, 1995, MEMS ’95, Proc. IEEE, 1995, pp. 157–162
Shao, L.C., Palaniapan, M., Tan, W.W., The nonlinearity cancellation phenomenon in micromechanical resonators, J. Micromech. Microeng. 18 (2008) 065014 CrossRefGoogle Scholar
Kacem, N., Hentz, S., Bifurcation topology tuning of a mixed behavior in nonlinear micromechanical resonators, Appl. Phys. Lett. 95 (2009) 183104 CrossRefGoogle Scholar
Kaajakari, V., Mattila, T., Lipsanen, A., Oja, A., Nonlinear mechanical effects in silicon longitudinal mode beam resonators, Sens. Actuators A: Physical 120 (2005) 6470 CrossRefGoogle Scholar
Osterberg, P.M., Senturia, S.D., M-test: A test chip for mems material property measurement using electrostatically actuated test structures, J. Microelectromech. Syst. 6 (1997) 107118 CrossRefGoogle Scholar
N. Kacem, S. Hentz, H. Fontaine, V. Nguyen, P. Robert, B. Legrand, L. Buchaillot, From mems to nems: Modelling and characterization of the non linear dynamics of resonators, a way to enhance the dynamic range, in Int. Conf. Nanotech, Boston, Massachusetts, USA, 2008
Ouakad, H.M., Younis, M.I., Nonlinear dynamics of electrically-actuated carbon nanotube resonator, J. Comput. Nonlinear Dynam. 5 (2010) 011009 CrossRefGoogle Scholar