Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T14:28:42.512Z Has data issue: false hasContentIssue false

Coupling of internal and external cooling of gas turbineblades

Published online by Cambridge University Press:  22 April 2014

F. Ghezali*
Affiliation:
Laboratoire Aero Hydrodynamique navale, Faculté de Génie-Mécanique,Université des Sciences et de la Technologie Mohamed Boudiaf d’Oran, USTMB d’Oran, BP 1505, El-Mnaouar, Algérie
A. Azzi
Affiliation:
Laboratoire Aero Hydrodynamique navale, Faculté de Génie-Mécanique,Université des Sciences et de la Technologie Mohamed Boudiaf d’Oran, USTMB d’Oran, BP 1505, El-Mnaouar, Algérie
A. Bouzidane
Affiliation:
Univ Tiaret. Fac. Sciences Appliquées, BP 78 City/Province, Tiaret 14000, Algeria
*
a Corresponding author:[email protected]
Get access

Abstract

Showerhead cooling process which consists of internal convective cooling and externalfilm cooling of a turbine blade is investigated using ANSYS-CFX software. The aim of thepresent investigation is to provide a better understanding of the fundamental nature ofshowerhead cooling using the three dimensional Reynolds averaged Navier Stokes analysis. Anumerical model has been developed to study the effects of coupled internal and externalcooling of the leading edge for a semi-elliptical body shape with the SST k-ω model. This modelconsists of all internal flow passages and cooling hole rows at the leading edge. Thenumerical results obtained are discussed and compared with experimental data available inthe literature. The results show that the cooling efficiency increases with the increaseof the blowing ratio and the Mach number, therefore, the overall efficiency for the steelbecomes less important compared to the plexiglas which has a low thermal conductivity.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

W.D. York, J.H. Leylek, Leading edge film-cooling physics: Part I – adiabatic effectiveness, 2002, ASME Paper GT2002-30166
Azzi, A., Jubran, B.A., Influence of leading edge lateral injection angles on the film cooling effectiveness of a gas turbine blade, Heat and Mass Transfer 40 (2004) 501508 CrossRefGoogle Scholar
W.D. York, J.H. Leylek, Leading edge film-cooling physics: Part II – heat transfer coefficient 2002, ASME Paper GT2002-30167
C. Falcoz, A Comparative Study of Showerhead Cooling Performance, Ph.D. Thesis N2735, Swiss Federal Institute of Technology-Lausanne (EPFL), 2003
Falcoz, C., Weigand, B., Ott, P., Experimental investigations on showerhead cooling on a blunt body, Int. J. Heat Mass Transfer 49 (2006) 12871298 CrossRefGoogle Scholar
Falcoz, C., Weigand, B., Ott, P., A comparative study on showerhead cooling performance, Int. J. Heat Mass Transfer 49 (2006) 1271286 CrossRefGoogle Scholar
D. Bohn, J. Ren, K. Kusterer, Conjugate heat transfer analysis for film cooling configurations with different hole geometries, 2003, ASME Paper GT2003-38369
Kim, Youn J., Kim, S.-M., Influence of shaped injection holes on turbine blade leading edge film cooling, Int. J. Heat Mass Transfer 47 (2004) 245256 CrossRefGoogle Scholar
Demuren, A.O., Rodi, W., Schonung, B., Systematic study of film cooling with a three-dimensional calculation procedure, Trans. ASME, J. Turbomach. 108 (1986) 124130 CrossRefGoogle Scholar
Gao, Z., Han, J., Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique, Trans. ASME, J. Heat Transfer 131 (2009) 061701061701-11 CrossRefGoogle Scholar
Lee, K.D., Kim, K.Y., Performance Evaluation of a Novel Film-Cooling Hole, Trans. ASME, J. Heat Transfer 134 (2012) 101702101702-7 CrossRefGoogle Scholar
Elnady, T., Hassan, I., Kadem, L., Lucas, T., Cooling effectiveness of shaped film holes for leading edge, Exp. Thermal Fluid Sci. 44 (2013) 649661 CrossRefGoogle Scholar
Kim, Y.J., Kim, S.M., Influence of shaped injection holes on turbine blade leading edge film cooling, Int. J. Heat Mass Transfer 47 (2004) 649661 CrossRefGoogle Scholar
S.P Harasgama, Aero-thermal Aspects of Gas Turbine Flow-Turbine blading internal cooling, VKI Lecture Series 1995-05, Heat transfer and cooling in gas turbines, 1995
Lakehal, D., Theodoridis, G.S., Rodi, W., Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model, Int. J. Heat Fluid Flow 22 (2001) 113122 CrossRefGoogle Scholar
Ligrani, P.M., Ramsey, A.E., Film Cooling from Spanwise-Oriented Holes in Two Staggered Rows, Trans. ASME, J. Turbomach. 119 (1997a) 562567 CrossRefGoogle Scholar
Ligrani, P.M., Ramsey, A.E., Film Cooling from a Single Row of Holes Oriented in Spanwise/Normal Planes, Trans. ASME, J. Turbomach. 119 (1997b) 770776 CrossRefGoogle Scholar
Maiteh, B.Y., Jubran, B.A., Influence of mainstream flow history on film cooling and heat transfer from two rows of simple and compound angle holes in combination, Int. J. Heat Fluid Flow 20 (1999) 158165 CrossRefGoogle Scholar
W.T. Vieser, F. Menter, Heat Transfer Predictions using advanced Two-Equation Turbulence Models, CFX-VAL10/0602, AEA Technology, CFX Documentation, 2001
Yao, Y., Zhang, J., Yang, Y., Numerical study on film cooling mechanism and characteristics of cylindrical holes with branched jet injections, Propulsion and Power Research 2 (2013) 3037 CrossRefGoogle Scholar
Kurganov, A., Tadmor, E., New High-Resolution Central Schemes for Nonlinear conservation Laws and Convectio–Diffusion Equation, J. Comput. Phys., 160 (2000) 241282 CrossRefGoogle Scholar
J.E. Bardina, P.G. Huang, T. Coakley, Turbulence Modeling Validation, 28th Fluid Dynamics Conference, AIAA Paper No. 1997-2121, 1997