Published online by Cambridge University Press: 14 August 2019
We show that if a permutation $\unicode[STIX]{x1D70B}$ contains two intervals of length 2, where one interval is an ascent and the other a descent, then the Möbius function $\unicode[STIX]{x1D707}[1,\unicode[STIX]{x1D70B}]$ of the interval $[1,\unicode[STIX]{x1D70B}]$ is zero. As a consequence, we prove that the proportion of permutations of length $n$ with principal Möbius function equal to zero is asymptotically bounded below by $(1-1/e)^{2}\geqslant 0.3995$. This is the first result determining the value of $\unicode[STIX]{x1D707}[1,\unicode[STIX]{x1D70B}]$ for an asymptotically positive proportion of permutations $\unicode[STIX]{x1D70B}$. We further establish other general conditions on a permutation $\unicode[STIX]{x1D70B}$ that ensure $\unicode[STIX]{x1D707}[1,\unicode[STIX]{x1D70B}]=0$, including the occurrence in $\unicode[STIX]{x1D70B}$ of any interval of the form $\unicode[STIX]{x1D6FC}\oplus 1\oplus \unicode[STIX]{x1D6FD}$.
V. Jelínek and J. Kynčl were supported by project 16-01602Y of the Czech Science Foundation (GAČR). J. Kynčl was also supported by Charles University project UNCE/SCI/004.