Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T11:59:01.483Z Has data issue: false hasContentIssue false

Structure of analytic Hausdorff spaces

Published online by Cambridge University Press:  26 February 2010

J. E. Jayne
Affiliation:
Department of Mathematics, University College London.
Get access

Extract

In Hausdorff topological spaces there are currently three definitions of analytic sets due respectively to Choquet [1], Sion [8], and Frolīk [3, 4]. Here it is shown that these definitions are equivalent.

Type
Research Article
Copyright
Copyright © University College London 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Choquet, G.. “Ensembles boréliens et analytiques dans les espaces topologiques”, C.R. Acad. Sci. Paris, 232 (1951), 21742176.Google Scholar
2.Frolik, Z.. “On the topological product of paracompact spaces”, Bull. Acad. Polon. Sci., 8 (1960), 747750.Google Scholar
3.Frolik, Z.. “On analytic spaces”, Bull. Acad. Polon. Sci., 9 1961, 721726.Google Scholar
4.Frolik, Z.. “A contribution to the descriptive theory of sets”, Top. Rel. Mod. Anal, and Alg. I, Prague, 1961Google Scholar
5.Frolik, Z.. “A survey of the separable descriptive theory of sets and spaces”, Czech. Math. J., 20 (1970), 406467.CrossRefGoogle Scholar
6.Rogers, C. A.. “Analytic sets in Hausdorff spaces”, Mathematika, 11 (1964), 18.CrossRefGoogle Scholar
7.Rogers, C. A.. “Descriptive Borel sets”, Proc. Roy. Soc. A, 286 (1965), 455478.Google Scholar
8.Sion, M.. “On analytic sets in topological spacesTrans. Amer. Math. Soc., 96 (1960), 341354.CrossRefGoogle Scholar