Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:24:53.707Z Has data issue: false hasContentIssue false

Spherical averages of Fourier transforms of measures with finite energy; dimensions of intersections and distance sets

Published online by Cambridge University Press:  26 February 2010

Pertti Mattila
Affiliation:
Department of Mathematics, University of Helsinki, Helsinki, Finland.
Get access

Extract

Let μ, be a positive Radon measure with compact support in the euclidean n-space ℝn. Introducing the Fourier transform

and the averages over the spheres

we can write the α-energy, 0 < α < n, of μ as

where the positive constants c1 and c2 depend only on n and α. The second equality is based on the Plancherel formula and the fact that where .

Type
Research Article
Copyright
Copyright © University College London 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

C.Carleson, L.. Selected Problems on Exceptional Sets (Van Nostrand, 1967).Google Scholar
F1.Falconer, K. J.. Geometry of Fractal Sets (Cambridge University Press, 1985).Google Scholar
F2.Falconer, K. J.. On the Hausdorff dimension of distance sets. Mathematika, 32 (1985), 206212.CrossRefGoogle Scholar
K1.Kahane, J.-P.. Some Random Series of Functions (Heath Mathematical Monographs, 1968).Google Scholar
K2.Kahane, J.-P.. Sur la dimensions des intersections, Aspects of Mathematics and its Applications, Barroso, J. A. editor (Elsevier Science Publishers B.V., 1986, 419430).CrossRefGoogle Scholar
KS.Kahane, J.-P. and Salem, R.. Ensembles parfaits et sèries trigonométriques (Hermann, 1963).Google Scholar
KR.Kaufmann, R.. On the theorem of Jarnik and Besicovitch. Acta Arithmetica, 33 (1981). 265267.Google Scholar
L.Landkof, N. S.. Foundations of Modern Potential Theory (Springer, 1972).Google Scholar
M1.Mattila, P.. Hausdorff dimension and capacities of intersections of sets in n-space. Acta Math., 152 (1984), 77105.Google Scholar
M2.Mattila, P., On the Hausdorff dimension and capacities of intersections. Mathematika, 32 (1985), 213217.CrossRefGoogle Scholar
M.Muckenhoupt, B.. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165 (1972), 207226.CrossRefGoogle Scholar
SW.Stein, E. M. and Weiss, G.. Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, 1971).Google Scholar
W.Watson, G. N.. Theory of Bessel Functions (Cambridge University Press, 1944).Google Scholar