Published online by Cambridge University Press: 26 February 2010
This paper is a sequel to a previous paper [1] on axially symmetric torsion-free stress distributions in isotropic elastic solids and applies the methods used to investigate these distributions to distributions in solids under torsion. The basis of these methods is that in a solid of revolution containing a symmetrically located crack the stresses set up in the neighbourhood of the crack by forces applied over the crack can be found by perturbing on their values in an infinite solid containing a crack of the same radius and under the same applied forces, provided the radius of the crack is small compared with a typical length of the solid of revolution. The problem of determining the stresses in the solid of revolution is shown to be governed by a Fredholm integral equation of the second kind, which holds whatever the ratio of the crack radius to the typical length, but which, when this ratio is small, is readily solved by iteration to give stresses perturbing on those in an infinite solid. A similar method can be applied to an infinite solid containing two or more cracks when the crack radii are small compared with a typical length of the crack array.