Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T06:02:10.802Z Has data issue: false hasContentIssue false

Reverse flow solutions of the Falkner-Skan equation for λ > 1

Published online by Cambridge University Press:  26 February 2010

A. H. Craven
Affiliation:
University of Sussex, Brighton.
L. A. Peletier
Affiliation:
University of Sussex, Brighton.
Get access

Extract

In this note we report on some numerical results regarding reverse flow solutions of the Falkner-Skan equation

on the half line 0 < t < ∞, which satisfy the boundary conditions

and

Type
Research Article
Copyright
Copyright © University College London 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cebeci, T. and Keller, H. B., “Shooting and parallel shooting methods for solving the Falkner-Skan boundary layer equations ”, J. Comp. Physics, 7 (1971), 289300.CrossRefGoogle Scholar
2.Coppel, W. A., “On a differential equation of boundary layer theory “, Phil. Trans. Roy. Soc. London Ser. A, 253 (1960), 101136.Google Scholar
3.Craven, A. H. and Peletier, L. A., “On the uniqueness of solutions of the Falkner-Skan equation”, Mathematika, 19 (1972), 127131.Google Scholar
4.Craven, A. H. and Peletier, L. A., “Solutions of the Falkner-Skan equation for “> 1 “, Sussex University Report, 1972.CrossRef+1+“,+Sussex+University+Report,+1972.>Google Scholar
5.Hastings, S. P., “Reversed flow solutions of the Falkner-Skan equation ”, SIAM J. Appl. Math., 22 (1972), 329334.CrossRefGoogle Scholar
6.Keller, H. B., Numerical methods for two-point boundary value problems, pp. 5468 (Gunn-Blaisdell, Waltham, Mass. 1968).Google Scholar
7.Libby, P. A. and Liu, T., “Further solutions of the Falkner-Skan equation “, AIAA Journal, 5 (1967), 10401042.CrossRefGoogle Scholar
8.Schlichting, H., Boundary layer theory, 6th ed. (McGraw-Hill, New York, 1960).Google Scholar
9.Stewartson, K., “Further solutions of the Falkner-Skan equation ”, Proc. Camb. Phil. Soc., 50 (1954), 454465.CrossRefGoogle Scholar