Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T05:37:48.323Z Has data issue: false hasContentIssue false

REPRESENTATION THEOREMS FOR INDEFINITE QUADRATIC FORMS REVISITED

Published online by Cambridge University Press:  12 June 2012

Luka Grubišić
Affiliation:
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia (email: [email protected])
Vadim Kostrykin
Affiliation:
Institut für Mathematik FB 08, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, D-55099 Mainz, Germany (email: [email protected])
Konstantin A. Makarov
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A. (email: [email protected])
Krešimir Veselić
Affiliation:
Fakultät für Mathematik und Informatik, Fernuniversität Hagen, Postfach 940, D-58084 Hagen, Germany (email: [email protected])
Get access

Abstract

The first and second representation theorems for sign-indefinite, not necessarily semi-bounded quadratic forms are revisited. New and straightforward proofs of these theorems are given. A number of necessary and sufficient conditions for the second representation theorem to hold are obtained. A new simple and explicit example of a self-adjoint operator for which the second representation theorem fails to hold is also provided.

Type
Research Article
Copyright
Copyright © University College London 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Azizov, T. Ya. and Iokhvidov, I. S., Linear Operators in Spaces with an Indefinite Metric, Wiley (Chichester, 1989).Google Scholar
[2]Birman, M. Sh. and Solomyak, M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publishing Co. (Dordrecht, 1987).CrossRefGoogle Scholar
[3]Bognár, J., Indefinite Inner Product Space (Ergebnisse der Mathematik und ihrer Grenzgebiete 78), Springer (Berlin, 1974).CrossRefGoogle Scholar
[4]van Casteren, J. A., Operators similar to unitary or selfadjoint ones. Pacific J. Math. 104 (1983), 241255.CrossRefGoogle Scholar
[5]Ćurgus, B., On the regularity of the critical point infinity of definitizable operators. Integral Equations Operator Theory 8 (1985), 462488.CrossRefGoogle Scholar
[6]Edmunds, D. E. and Evans, W. D., Spectral Theory and Differential Operators (Oxford Mathematical Monographs), Clarendon Press (Oxford, 1989).Google Scholar
[7]Esteban, M. J. and Loss, M., Self-adjointness via partial Hardy-like inequalities. In Mathematical Results in Quantum Mechanics, (eds Beltita, I., Nenciu, G. and Purice, R.), World Scientific (Hackensack, NJ, 2008), 4147.CrossRefGoogle Scholar
[8]Fleige, A., Spectral Theory of Indefinite Krein–Feller Differential Operators (Mathematical Research 98), Akademie (Berlin, 1996).Google Scholar
[9]Fleige, A., A counterexample to completeness properties for indefinite Sturm–Liouville problems. Math. Nachr. 190 (1998), 123128.CrossRefGoogle Scholar
[10]Fleige, A., Non-semibounded sesquilinear forms and left-indefinite Sturm–Liouville problems. Integral Equations Operator Theory 33 (1999), 2033.CrossRefGoogle Scholar
[11]Fleige, A., Hassi, S. and de Snoo, H., A Krein space approach to representation theorems and generalized Friedrichs extensions. Act. Sci. Math. (Szeged) 66 (2000), 633650.Google Scholar
[12]Fleige, A., Hassi, S. and de Snoo, H., Generalized Friedrichs extensions associated with interface conditions for Sturm–Liouville operators. In Operator Theory and Indefinite Inner Product Spaces (Operator Theory: Advances and Applications 163) (eds Langer, M., Luger, A. and Woracek, H.), Birkhäuser (Basel, 2006), 135145.Google Scholar
[13]Fleige, A., Hassi, S., de Snoo, H. and Winkler, H., Sesquilinear forms corresponding to a non-semibounded Sturm–Liouville operator. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 291318.CrossRefGoogle Scholar
[14]Gesztesy, F., Malamud, M., Mitrea, M. and Naboko, S., Generalized polar decompositions for closed operators in Hilbert spaces and some applications. Integral Equations Operator Theory 64 (2009), 83113.CrossRefGoogle Scholar
[15]Heinz, E., Beiträge zur Störungstheorie der Spektralzerlegung. Math. Ann. 123 (1951), 415438.CrossRefGoogle Scholar
[16]Kato, T., Perturbation Theory for Linear Operators, Springer (Berlin, 1966).Google Scholar
[17]Konstantinov, A. and Mennicken, R., On the Friedrichs extension of some block operator matrices. Integral Equations Operator Theory 42 (2002), 472481.CrossRefGoogle Scholar
[18]Kostrykin, V., Makarov, K. A. and Motovilov, A. K., A generalization of the tan 2Θ theorem. In Current Trends in Operator Theory and Its Applications (Operator Theory: Advances and Applications 149) (eds Ball, J. A., Klaus, M., Helton, J. W. and Rodman, L.), Birkhäuser (Basel, 2004), 349372.CrossRefGoogle Scholar
[19]Kostrykin, V., Makarov, K. A. and Motovilov, A. K., Perturbation of spectra and spectral subspaces. Trans. Amer. Math. Soc. 359 (2007), 7789.CrossRefGoogle Scholar
[20]Krein, S. G., Petunin, Ju. I. and Semenov, E. M., Interpolation of Linear Operators (Translations of Mathematical Monographs 54), American Mathematical Society (Providence, RI, 1982).Google Scholar
[21]Langer, H., Spectral functions of definitizable operators in Krein spaces. In Functional Analysis (Lecture Notes in Mathematics 948) (eds H., D. and Kurepa, Butković), Springer (Berlin, 1982), 146.Google Scholar
[22]McIntosh, A., Bilinear forms in Hilbert space. J. Math. Mech. 19 (1970), 10271045.Google Scholar
[23]McIntosh, A., Hermitian bilinear forms which are not semibounded. Bull. Amer. Math. Soc. 76 (1970), 732737.CrossRefGoogle Scholar
[24]Nenciu, G., Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms. Comm. Math. Phys. 48 (1976), 235247.CrossRefGoogle Scholar
[25]Veselić, K., Perturbation theory for the eigenvalues of factorised symmetric matrices. Linear Algebra Appl. 309 (2000), 85102.CrossRefGoogle Scholar
[26]Veselić, K., Spectral perturbation bounds for sefadjoint operators. I. Oper. Matrices 2 (2008), 307339.CrossRefGoogle Scholar
[27]Volkmer, H., Sturm–Liouville problems with indefinite weights and Everitt’s inequality. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 10971112.CrossRefGoogle Scholar