Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T13:03:28.870Z Has data issue: false hasContentIssue false

Random polytopes in smooth convex bodies

Published online by Cambridge University Press:  26 February 2010

Imre Bárány
Affiliation:
The Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest P.O.B. 127, Hungary.
Get access

Abstract.

Let K ⊂ Rd be a convex body and choose points xl, x2, …, xn randomly, independently, and uniformly from K. Then Kn = conv {x1, …, xn} is a random polytope that approximates K (as n → ∞) with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K – vol Kn when K is a smooth convex body. Moreover, this result is extended to quermassintegrals (instead of volume).

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Affentranger, F.. The convex hull of random points with spherically symmetric distribution. To appear in Rend. Sem. Mat. Torino.Google Scholar
2.Affentranger, F. and Wieacker, J. A.. On the convex hull of uniform random points in a simple d-polytope. Discrete and Comp. Geometry, 6 (1991), 191205.Google Scholar
3.Bárány, I.. Intrinsic volumes and f-vectors of random polytopes. Math. Ann., 285 (1989), 671699.CrossRefGoogle Scholar
4.Bárány, I. and Buchta, C.. On the convex hull of uniform random points in an arbitrary d-polytope. Auz. Öster. Akad. Wiss. Matk-Natur., 77 (1990), 2527.Google Scholar
5.Bonnesen, I. and Fenchel, W., Theorie der konvexen Körper (Springer, Berlin, 1934).Google Scholar
6.Bárány, I. and Larman, D. G.. Convex bodies, economic cap coverings, random polytopes. Mathematika, 35 (1988), 274291.CrossRefGoogle Scholar
7.Efron, B.. The convex hull of a random set of points. Biometrika, 52 (1965), 331343.CrossRefGoogle Scholar
8.Rényi, A. and Sulanke, R.. Über die konvexe Hiille von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth verw. Geb., 2 (1963), 7584.CrossRefGoogle Scholar
9.Rényi, A. and Sulanke, R.. Über die konvexe Hülle von n zufällig gewählten Punkten II. Z. Wahrscheinlichkeitsth. verw. Geb., 3 (1964), 138147.CrossRefGoogle Scholar
10.Santaló, L. A.. Integral Geometry and Geometric Probability (Addison-Wesley, Reading, MA, 1976).Google Scholar
11.Schneider, R.. Random approximation of convex sets. J. Microscopy, 151 (1988), 211227.CrossRefGoogle Scholar
12.Schneider, R. and Wieacker, J. A.. Random polytopes in a convex body. Z. Walrscheinlichkeitsth. verw. Geb., 52 (1980), 6973.CrossRefGoogle Scholar
13.Wieacker, J. A.. Einige Probleme der polyedrischen Approximation (Diplomarbeit, Freiburg i. Br., 1978).Google Scholar
14.Wei, B. F. van. The convex hull of a uniform sample from the interior of a simple d-polytope. J. Appl. Prob., 26 (1989), 259273.Google Scholar