Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T06:06:27.113Z Has data issue: false hasContentIssue false

Products on spheres

Published online by Cambridge University Press:  26 February 2010

I. M. James
Affiliation:
The Mathematical Institute, 10 Parks Road, Oxford.
Get access

Summary

Multiplications on spheres are studied in [11], [12] from the standpoint of homotopy theory. These multiplications are products with a unit element. The present paper deals with products in general. The investigation involves proving some results on the toric construction and the Whitehead product. These results also lead to theorems about the Stiefel manifold of unit tangent vectors to a sphere, originally proved by M. G. Barratt, which clear up some points in the homotopy theory of sphere bundles over spheres (see [15], [16]). They also enable us to prove that certain of the classical Lie groups are not homotopy-commutative.

Type
Research Article
Copyright
Copyright © University College London 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barcus, W. D. and Barratt, M. G., “On the homotopy classification of the extensions of a fixed map”, Trans. American Math. Soc., 88 (1958), 5774.CrossRefGoogle Scholar
2.Barratt, M. G., James, I. M. and Stein, N., “Whitehead products and projective spaces” (not yet published).Google Scholar
3.Borel, A. and Serre, J.-P., “Groupes de Lie et puissances réduites de Steenrod”, American J. of Math., 75 (1953), 409448.CrossRefGoogle Scholar
4.Hilton, P. J., “Suspension theorems and the generalized Hopf invariant”, Proc. London Math. Soc. (3), 1 (1951), 462493.CrossRefGoogle Scholar
5.Hilton, P. J., “A note on the P-homomorphism in homotopy groups of spheres”, Proc. Cambridge Phil. Soc., 51 (1955), 230233.CrossRefGoogle Scholar
6.Hilton, P. J. and Whitehead, J. H. C., “Note on the Whitehead product”, Ann. of Math., 58 (1953), 429442.CrossRefGoogle Scholar
7.Hopf, H., “Über die Abbildungen von Sphären auf Sphären niedrigerer Dimension”, Fundamenta Math, 25 (1935), 427440.CrossRefGoogle Scholar
8.James, I. M., “On the homotopy groups of certain pairs and triads”, Quart. J. of Math., Oxford (2), 5 (1954), 260270.CrossRefGoogle Scholar
9.James, I. M., “On the suspension triad”, Ann. of Math., 63 (1956), 191246.CrossRefGoogle Scholar
10.James, I. M., “On spaces with a multiplication”, Pacific J. of Math., 7 (1957), 10831100.CrossRefGoogle Scholar
11.James, I. M., “Multiplication on spheres I”, Proc. American Math. Soc., 8 (1957), 192196.Google Scholar
12.James, I. M., “Multiplication on spheres II”, Trans. American Math. Soc., 84 (1957), 545558.Google Scholar
13.James, I. M., “Commutative products on spheres”, Proc. Cambridge Phil. Soc., 53 (1957), 6368.CrossRefGoogle Scholar
14.James, I. M., “Symmetric functions of several variables, whose range and domain is a sphere”, Bol. Soc. Mat. Mexicana (2), 1 (1956), 8588.Google Scholar
15.James, I. M. and Whitehead, J. H. C., “The homotopy theory of sphere bundles over spheres I”, Proc. London Math. Soc. (3), 4 (1954), 196218.CrossRefGoogle Scholar
16.James, I. M. and Whitehead, J. H. C., “The homotopy theory of sphere bundles over spheres II”, Proc. London Math. Soc. (3), 5 (1955), 148166.CrossRefGoogle Scholar
17.Kojima, J., “On the Pontrjagin product mod 2 of spinor groups”, Mem. Fac. Sci. Kyusyu (A), 11 (1957), 114.Google Scholar
18.Samelson, H., “Groups and spaces of loops”, Comm. Math. Helv., 28 (1954), 278286.CrossRefGoogle Scholar
19.Serre, J.-P., “Groupes d'homotopie et classes de groupes abéliens”, Ann. of Math., 58 (1953), 258294.CrossRefGoogle Scholar
20.Sugawara, M., “Some remarks on homotopy groups of rotation groups”, Math. J. Okayama, 3 (1954), 129133.Google Scholar
21.Toda, H., “Generalized Whitehead products and homotopy groups of spheres”, J. Inst. Polytech., Osaka City Univ., 3 (1952), 4382.Google Scholar
22.Toda, H., Saito, Y. and Yokota, I., “Note on the generator of π(SO(n))”, Mem. College Sci. Kyoto (A), 30 (1957), 227230.Google Scholar
23.Whitehead, G. W., “A generalization of the Hopf invariant”, Ann. of Math., 51 (1950), 192237.CrossRefGoogle Scholar
24.Whitehead, G. W., “On the Freudenthal theorems”, Ann. of Math., 57 (1953), 209228.CrossRefGoogle Scholar